Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 9;21(1):110.
doi: 10.1186/s12889-020-10126-4.

The use of mobile phones for the prevention and control of arboviral diseases: a scoping review

Affiliations

The use of mobile phones for the prevention and control of arboviral diseases: a scoping review

Maria Angelica Carrillo et al. BMC Public Health. .

Abstract

Background: The rapid expansion of dengue, Zika and chikungunya with large scale outbreaks are an increasing public health concern in many countries. Additionally, the recent coronavirus pandemic urged the need to get connected for fast information transfer and exchange. As response, health programmes have -among other interventions- incorporated digital tools such as mobile phones for supporting the control and prevention of infectious diseases. However, little is known about the benefits of mobile phone technology in terms of input, process and outcome dimensions. The purpose of this scoping review is to analyse the evidence of the use of mobile phones as an intervention tool regarding the performance, acceptance, usability, feasibility, cost and effectiveness in dengue, Zika and chikungunya control programmes.

Methods: We conducted a scoping review of studies and reports by systematically searching: i) electronic databases (PubMed, PLOS ONE, PLOS Neglected Tropical Disease, LILACS, WHOLIS, ScienceDirect and Google scholar), ii) grey literature, using Google web and iii) documents in the list of references of the selected papers. Selected studies were categorized using a pre-determined data extraction form. Finally, a narrative summary of the evidence related to general characteristics of available mobile health tools and outcomes was produced.

Results: The systematic literature search identified 1289 records, 32 of which met the inclusion criteria and 4 records from the reference lists. A total of 36 studies were included coming from twenty different countries. Five mobile phone services were identified in this review: mobile applications (n = 18), short message services (n=7), camera phone (n = 6), mobile phone tracking data (n = 4), and simple mobile communication (n = 1). Mobile phones were used for surveillance, prevention, diagnosis, and communication demonstrating good performance, acceptance and usability by users, as well as feasibility of mobile phone under real life conditions and effectiveness in terms of contributing to a reduction of vectors/ disease and improving users-oriented behaviour changes. It can be concluded that there are benefits for using mobile phones in the fight against arboviral diseases as well as other epidemic diseases. Further studies particularly on acceptance, cost and effectiveness at scale are recommended.

Keywords: Chikungunya; Dengue; Mobile phone; Mobile technology; Zika; mHealth.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The PRISMA flow diagram. Search results and selection process of studies
Fig. 2
Fig. 2
Geographic distribution of mobile phone-based studies. Number of studies per country. This figure shows the distribution of the mobile phone technology used for fighting against arboviral diseases in the last years (from 2009 to 2019). The map was created by our research team using Microsoft® Excel for Microsoft 365 MSO

Similar articles

Cited by

References

    1. MUG K, Reiner RC, Jr, Brady OJ, Messina JP, Gilbert M, Pigott DM, Yi D, Johnson K, Earl L, Marczak LB, Shirude S, Davis Weaver N, Bisanzio D, Perkins TA, Lai S, Lu X, Jones P, Coelho GE, Carvalho RG, Van Bortel W, Marsboom C, Hendrickx G, Schaffner F, Moore CG, Nax HH, Bengtsson L, Wetter E, Tatem AJ, Brownstein JS, Smith DL, Lambrechts L, Cauchemez S, Linard C, Faria NR, Pybus OG, Scott TW, Liu Q, Yu H, GRW W, Hay SI, Golding N. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4(5):854–863. doi: 10.1038/s41564-019-0376-y. - DOI - PMC - PubMed
    1. Pan American Health Organization: Zika - Actualización Epidemiológica. 2017 https://www.paho.org/hq/dmdocuments/2017/2017-may-25-phe-actualizacion-e.... Accessed 12 Feb 2019.
    1. World Health Organization: Dengue y dengue grave. (2018) http://www.who.int/mediacentre/factsheets/fs117/es. Accessed 12 Feb 2019.
    1. Paixão ES, Teixeira MG, Rodrigues LC. Zika, Chikungunya and dengue: The causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health. 2018;3(Suppl 1):e000530. doi: 10.1136/bmjgh-2017-000530. - DOI - PMC - PubMed
    1. Gulland A. Zika virus is a global public health emergency, declares WHO. BMJ. 2016;352:i657. doi: 10.1136/bmj.i657. - DOI - PubMed

Publication types

MeSH terms