Single-step fluorescent probes to detect decrotonylation activity of HDACs through intramolecular reactions
- PMID: 33422982
- DOI: 10.1016/j.ejmech.2020.113120
Single-step fluorescent probes to detect decrotonylation activity of HDACs through intramolecular reactions
Abstract
Lysine crotonylation plays vital roles in gene transcription and cellular metabolism. Nevertheless, methods for dissecting the molecular mechanisms of decrotonyaltion remains limited. So far, there is no single-step fluorescent method developed for enzymatic decrotonylation activity detection. The major difficulty is that the aliphatic crotonylated lysine doesn't allow π-conjugation to a fluorophore and decrotonylation can not modulate the electronic state directly. Herein, we have designed and synthesized two activity-based single-step fluorogenic probes KTcr-I and KTcr-II for detecting enzymatic decrotonylation activity. These two probes can be recognized by histone deacetylases and undergo intramolecular nucleophilic exchange reaction to generate fluorescence signal. Notably, peptide sequence-dependent effect was observed. KTcr-I can be recognized by Sirt2 more effectively, while KTcr-II with LGKcr peptide sequence preferentially reacted with HDAC3. Compared to other methods of studying enzymatic decrotonylation activity, our single-step fluorescent method has a number of advantages, such as facileness, high sensitivity, cheap facility and little material consumed. We envision that the probes developed in this study will provide useful tools to screen inhibitors which suppress the decrotonylation activity of HDACs. Such probes will be useful for further delineating the roles of decrotonylation enzyme and aid in biomarker identification and drug discovery.
Keywords: Decrotonylation; Fluorescent probe; Histone deacetylases; Intramolecular reaction; Single-step; Sirtuin.
Copyright © 2020 Elsevier Masson SAS. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Chemical Information
Research Materials
Miscellaneous
