Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul;39(7):431.e15-431.e22.
doi: 10.1016/j.urolonc.2020.11.040. Epub 2021 Jan 8.

A novel nomogram predicting lymph node invasion among patients with prostate cancer: The importance of extracapsular extension at multiparametric magnetic resonance imaging

Affiliations

A novel nomogram predicting lymph node invasion among patients with prostate cancer: The importance of extracapsular extension at multiparametric magnetic resonance imaging

E Di Trapani et al. Urol Oncol. 2021 Jul.

Abstract

Purpose: To develop a novel risk tool that allows the prediction of lymph node invasion (LNI) among patients with prostate cancer (PCa) treated with robot-assisted radical prostatectomy (RARP) and extended pelvic lymph node dissection (ePLND).

Methods: We retrospectively identified 742 patients treated with RARP + ePLND at a single center between 2012 and 2018. All patients underwent multiparametric magnetic resonance imaging (mpMRI) and were diagnosed with targeted biopsies. First, the nomogram published by Briganti et al. was validated in our cohort. Second, three novel multivariable logistic regression models predicting LNI were developed: (1) a complete model fitted with PSA, ISUP grade groups, percentage of positive cores (PCP), extracapsular extension (ECE), and Prostate Imaging Reporting and Data System (PI-RADS) score; (2) a simplified model where ECE score was not included (model 1); and (3) a simplified model where PI-RADS score was not included (model 2). The predictive accuracy of the models was assessed with the receiver operating characteristic-derived area under the curve (AUC). Calibration plots and decision curve analyses were used.

Results: Overall, 149 patients (20%) had LNI. In multivariable logistic regression models, PSA (OR: 1.03; P= 0.001), ISUP grade groups (OR: 1.33; P= 0.001), PCP (OR: 1.01; P= 0.01), and ECE score (ECE 4 vs. 3 OR: 2.99; ECE 5 vs. 3 OR: 6.97; P< 0.001) were associated with higher rates of LNI. The AUC of the Briganti et al. model was 74%. Conversely, the AUC of model 1 vs. model 2 vs. complete model was, respectively, 78% vs. 81% vs. 81%. Simplified model 1 (ECE score only) was then chosen as the best performing model. A nomogram to calculate the individual probability of LNI, based on model 1 was created. Setting our cut-off at 5% we missed only 2.6% of LNI patients.

Conclusions: We developed a novel nomogram that combines PSA, ISUP grade groups, PCP, and mpMRI-derived ECE score to predict the probability of LNI at final pathology in RARP candidates. The application of a nomogram derived cut-off of 5% allows to avoid a consistent number of ePLND procedures, missing only 2.6% of LNI patients. External validation of our model is needed.

Keywords: LNI; Lymph nodes dissection; Multiparametric MRI; Nomogram; Prostate cancer.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources