Striatal and hippocampal contributions to flexible navigation in rats and humans
- PMID: 33426302
- PMCID: PMC7755934
- DOI: 10.1177/2398212820979772
Striatal and hippocampal contributions to flexible navigation in rats and humans
Abstract
The hippocampus has been firmly established as playing a crucial role in flexible navigation. Recent evidence suggests that dorsal striatum may also play an important role in such goal-directed behaviour in both rodents and humans. Across recent studies, activity in the caudate nucleus has been linked to forward planning and adaptation to changes in the environment. In particular, several human neuroimaging studies have found the caudate nucleus tracks information traditionally associated with that by the hippocampus. In this brief review, we examine this evidence and argue the dorsal striatum encodes the transition structure of the environment during flexible, goal-directed behaviour. We highlight that future research should explore the following: (1) Investigate neural responses during spatial navigation via a biophysically plausible framework explained by reinforcement learning models and (2) Observe the interaction between cortical areas and both the dorsal striatum and hippocampus during flexible navigation.
Keywords: Spatial navigation; dorsal striatum; flexible behaviour; goals; hippocampus; reinforcement learning; wayfinding.
© The Author(s) 2020.
Conflict of interest statement
Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Figures

Similar articles
-
Reinforcement learning approaches to hippocampus-dependent flexible spatial navigation.Brain Neurosci Adv. 2021 Apr 9;5:2398212820975634. doi: 10.1177/2398212820975634. eCollection 2021 Jan-Dec. Brain Neurosci Adv. 2021. PMID: 33954259 Free PMC article.
-
Hippocampus and subregions of the dorsal striatum respond differently to a behavioral strategy change on a spatial navigation task.J Neurophysiol. 2015 Sep;114(3):1399-416. doi: 10.1152/jn.00189.2015. Epub 2015 Jun 17. J Neurophysiol. 2015. PMID: 26084902 Free PMC article.
-
The Complex Nature of Hippocampal-Striatal Interactions in Spatial Navigation.Front Hum Neurosci. 2018 Jun 21;12:250. doi: 10.3389/fnhum.2018.00250. eCollection 2018. Front Hum Neurosci. 2018. PMID: 29977198 Free PMC article.
-
Spatial goal coding in the hippocampal formation.Neuron. 2022 Feb 2;110(3):394-422. doi: 10.1016/j.neuron.2021.12.012. Epub 2022 Jan 14. Neuron. 2022. PMID: 35032426 Review.
-
The hippocampal-striatal axis in learning, prediction and goal-directed behavior.Trends Neurosci. 2011 Oct;34(10):548-59. doi: 10.1016/j.tins.2011.08.001. Epub 2011 Sep 1. Trends Neurosci. 2011. PMID: 21889806 Review.
Cited by
-
Rethinking retrosplenial cortex: Perspectives and predictions.Neuron. 2023 Jan 18;111(2):150-175. doi: 10.1016/j.neuron.2022.11.006. Epub 2022 Dec 1. Neuron. 2023. PMID: 36460006 Free PMC article. Review.
-
Selective neural coding of object, feature, and geometry spatial cues in humans.Hum Brain Mapp. 2022 Dec 1;43(17):5281-5295. doi: 10.1002/hbm.26002. Epub 2022 Jul 1. Hum Brain Mapp. 2022. PMID: 35776524 Free PMC article.
-
Multisensory input modulates memory-guided spatial navigation in humans.Commun Biol. 2023 Nov 14;6(1):1167. doi: 10.1038/s42003-023-05522-6. Commun Biol. 2023. PMID: 37963986 Free PMC article.
-
Volumetric and connectivity assessment of the caudate nucleus in California sea lions and coyotes.Anim Cogn. 2022 Oct;25(5):1231-1240. doi: 10.1007/s10071-022-01685-7. Epub 2022 Sep 17. Anim Cogn. 2022. PMID: 36114948
-
Predictive maps in rats and humans for spatial navigation.Curr Biol. 2022 Sep 12;32(17):3676-3689.e5. doi: 10.1016/j.cub.2022.06.090. Epub 2022 Jul 20. Curr Biol. 2022. PMID: 35863351 Free PMC article.
References
-
- Andersen P, Morris R, Amaral D, et al. (eds) (2006) The Hippocampus Book. Oxford: Oxford University Press.
-
- Balleine BW, Dezfouli A, Ito M, et al. (2015) Hierarchical control of goal-directed action in the cortical–basal ganglia network. Current Opinion in Behavioral Sciences 5: 1–7.
-
- Banino A, Barry C, Uria B, et al. (2018) Vector-based navigation using grid-like representations in artificial agents. Nature 557(7705): 429–433. - PubMed
-
- Behrens TE, Muller TH, Whittington JC, et al. (2018) What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100(2): 490–509. - PubMed
Publication types
LinkOut - more resources
Full Text Sources