From waste of marine culture to natural patch in cardiac tissue engineering
- PMID: 33426372
- PMCID: PMC7782558
- DOI: 10.1016/j.bioactmat.2020.12.011
From waste of marine culture to natural patch in cardiac tissue engineering
Abstract
Sea squirt, as a highly invasive species and main biofouling source in marine aquaculture, has seriously threatened the biodiversity and aquaculture economy. On the other hand, a conductive biomaterial with excellent biocompatibility, and appropriate mechanical property from renewable resources is urgently required for tissue engineering patches. To meet these targets, we presented a novel and robust strategy for sustainable development aiming at the marine pollution via recycling and upgrading the waste biomass-sea squirts and serving as a renewable resource for functional bio-scaffold patch in tissue engineering. We firstly demonstrated that the tunic cellulose derived natural self-conductive scaffolds successfully served as functional cardiac patches, which significantly promote the maturation and spontaneous contraction of cardiomyocytes both in vitro and enhance cardiac function of MI rats in vivo. We believe this novel, feasible and "Trash to Treasure" strategy to gain cardiac patches via recycling the waste biomass must be promising and beneficial for marine environmental bio-pollution issue and sustainable development considering the large-scale consumption potential for tissue engineering and other applications.
Keywords: Biofouling; Cardiac tissue engineering; Cellulose; Myocardial infarction; Sea squirts.
© 2020 [The Author/The Authors].
Conflict of interest statement
The authors have declared that no competing interest exists.
Figures
References
-
- Hoag H. Invaders leave enemies behind. Nature. 2003;6:1476–4687. doi: 10.1038/news030203-6. - DOI
-
- Lacoste E., Gaertner-Mazouni N. Biofouling impact on production and ecosystem functioning: a review for bivalve aquaculture. Rev. Aquacult. 2015;7:187–196. doi: 10.1111/raq.12063. - DOI
-
- Kenworthy J.M., Davoult D., Lejeusne C. Compared stress tolerance to short-term exposure in native and invasive tunicates from the NE Atlantic: when the invader performs better. Marine Biology. 2018;165:164. doi: 10.1007/s00227-018-3420-1. - DOI
-
- Islam M.S., Haque M. The mangrove-based coastal and nearshore fisheries of Bangladesh: ecology, exploitation and management. Rev. Fish Biol. Fish. 2004;14:153–180. doi: 10.1007/s11160-004-3769-8. - DOI
-
- Dunlop M.J., Bishnu A., Rabin B. Isolation of nanocrystalline cellulose from tunicates. J Environ Chem Eng. 2018;6:4408–4412. doi: 10.1016/j.jece.2018.06.056. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
