Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar;126(1):29-39.
doi: 10.1016/0012-1606(88)90235-7.

Growth cone guidance by substrate-bound laminin pathways is correlated with neuron-to-pathway adhesivity

Affiliations

Growth cone guidance by substrate-bound laminin pathways is correlated with neuron-to-pathway adhesivity

J A Hammarback et al. Dev Biol. 1988 Mar.

Abstract

Substrate-bound laminin pathways prepared by the method of Hammarback et al. [J.A. Hammarback, S.L. Palm, L.T. Furcht, and P.C. Letourneau (1985). J. Neurosci. Res. 13, 213-220] guided peripheral nervous system neurites (dissociated dorsal root ganglia and sympathetic ganglia) and central nervous system neurites (dissociated spinal cord and brain). Guidance of individual growth cones by 7- to 10-micron-wide laminin pathways was observed using time-lapse video microscopy. Fibronectin pathways, produced by the method used for laminin pathways, did not guide neurites. The guidance effect of laminin pathways was quantified and found to correlate with the concentration of laminin initially applied to the substratum. The concentration of laminin initially applied to the substratum also correlated with increased adhesivity of dorsal root ganglia (DRG) neurons to laminin constituting the pathways relative to uv-irradiated laminin that borders the pathways. The guidance effect of laminin pathways was blocked by anti-laminin antibodies or by laminin but not by anti-fibronectin antibodies. This study demonstrates that guidance of DRG neurites by laminin occurs at the growth cone in a manner consistent with the hypothesis of guidance by differential neuron-to-substratum adhesivity.

PubMed Disclaimer

Publication types

LinkOut - more resources