Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 15:588:522-530.
doi: 10.1016/j.jcis.2020.12.090. Epub 2020 Dec 28.

Temperature- and composition-dependent conformational transitions of amphipathic peptide-phospholipid nanodiscs

Affiliations

Temperature- and composition-dependent conformational transitions of amphipathic peptide-phospholipid nanodiscs

Chiharu Anada et al. J Colloid Interface Sci. .

Abstract

Nanodiscs are discoidal particles in which a lipid bilayer is encircled by amphipathic molecules such as proteins, peptides, or synthetic polymers. The apolipoprotein-A-I-derived peptide 18A is known to form nanodiscs in the presence of phospholipids, but the detailed mechanism of the formation and deformation of these nanodiscs in response to changes in the surrounding environment is not well understood. Here, we investigated the temperature- and composition-dependent structural changes of 18A-phosphatidylcholine complexes using fluorescence spectroscopy, dynamic light scattering, circular dichroism, static 31P NMR, and electron microscopy. We found that the nanodiscs in fast isotropic rotational motion increased in size above the gel-to-liquid-crystalline phase transition temperature of the lipid bilayers, resulting in the formation of enlarged nanodiscs and a lamellar phase. The lamellar phase was found to be oriented along the magnetic field. Further increase in temperature induced the formation of lipid vesicles. These transformations were explained using a transition model based on the migration of the peptide from the rim of the nanodiscs to the liquid-crystalline bilayer phase. The study outcomes provide a basis for understanding the design principles of discoidal nanostructures for structural biology and nanomedicine applications.

Keywords: Dynamic light scattering; NMR; Nanodisc; Peptide; Phase transition; Phospholipid.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that there is no conflict of interest.

LinkOut - more resources