Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 12;3(6):1062-1074.
doi: 10.1021/acsbiomaterials.7b00006. Epub 2017 Mar 31.

Nonmulberry Silk Braids Direct Terminal Osteocytic Differentiation through Activation of Wnt-Signaling

Affiliations

Nonmulberry Silk Braids Direct Terminal Osteocytic Differentiation through Activation of Wnt-Signaling

Swati Midha et al. ACS Biomater Sci Eng. .

Abstract

Silk polymers can regulate osteogenesis by mimicking some features of the extracellular matrix of bone and facilitate mineralized deposition on their surface by cultured osteoprogenitors. However, terminal differentiation of these mineralizing osteoblasts into osteocytic phenotypes has not yet been demonstrated on silk. Therefore, in this study we test the hypothesis that flat braids of natively (nonregenerated) spun nonmulberry silk A. mylitta, possessing mechanical stiffness in the range of trabecular bone, can regulate osteocyte differentiation within their 3D microenvironment. We seeded human preosteoblasts onto these braids and cultured them under varied temperatures (33.5 and 39 °C), soluble factors (dexamethasone, ascorbic acid, and β-glycerophosphate), and cytokine (TGF-β1). After 1 week, cell dendrites were conspicuously evident, confirming osteocyte differentiation, especially, in the presence of osteogenic factors and TGF-β1 expressing all characteristic osteocyte markers (podoplanin, DMP-1, and sclerostin). A. mylitta silk braids alone were sufficient to induce this differentiation, albeit only transiently. Therefore, we believe that the combinatorial effect of A. mylitta silk (surface chemistry, braid rigidity, and topography), osteogenic differentiation factors, and TGF-β1 were critical in stabilizing the mature osteocytic phenotype. Interestingly, Wnt signaling promoted osteocytic differentiation as evidenced by the upregulated expression of β-catenin in the presence of osteogenic factors and growth factor. This study highlights the role of nonmulberry silk braids in regulating stable osteocytic differentiation. Future studies could benefit from this understanding of the signaling mechanisms associated with silk-based matrices in order to develop 3D in vitro bone model systems.

Keywords: Wnt/β-catenin signaling; nonmulberry silk; osteocyte; osteogenic differentiation; textile braid.

PubMed Disclaimer