Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity
- PMID: 33430414
- PMCID: PMC7826902
- DOI: 10.3390/nano11010124
Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity
Abstract
Co-exposure of nanomaterials and chemicals can cause mixture toxicity effects to living organisms. Predictive models might help to reduce the intensive laboratory experiments required for determining the toxicity of the mixtures. Previously, concentration addition (CA), independent action (IA), and quantitative structure-activity relationship (QSAR)-based models were successfully applied to mixtures of organic chemicals. However, there were few studies concerning predictive models for toxicity of nano-mixtures before June 2020. Previous reviews provided comprehensive knowledge of computational models and mechanisms for chemical mixture toxicity. There is a gap in the reviewing of datasets and predictive models, which might cause obstacles in the toxicity assessment of nano-mixtures by using in silico approach. In this review, we collected 183 studies of nano-mixture toxicity and curated data to investigate the current data and model availability and gap and to derive research challenges to facilitate further experimental studies for data gap filling and the development of predictive models.
Keywords: data curation; nano-mixture; predictive models; toxicity.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol: Independent action surpasses concentration addition.Chemosphere. 2016 Aug;156:8-13. doi: 10.1016/j.chemosphere.2016.04.072. Epub 2016 May 6. Chemosphere. 2016. PMID: 27156210
-
State of the art in the application of QSAR techniques for predicting mixture toxicity in environmental risk assessment.SAR QSAR Environ Res. 2015;26(1):41-59. doi: 10.1080/1062936X.2014.984627. SAR QSAR Environ Res. 2015. PMID: 25608956 Review.
-
Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures.Aquat Toxicol. 2006 Feb 10;76(2):93-110. doi: 10.1016/j.aquatox.2005.10.001. Epub 2005 Nov 28. Aquat Toxicol. 2006. PMID: 16310872
-
A framework for ecological risk assessment of metal mixtures in aquatic systems.Environ Toxicol Chem. 2018 Mar;37(3):623-642. doi: 10.1002/etc.4039. Epub 2018 Feb 15. Environ Toxicol Chem. 2018. PMID: 29135043
-
Tissue residue approach for chemical mixtures.Integr Environ Assess Manag. 2011 Jan;7(1):99-115. doi: 10.1002/ieam.106. Integr Environ Assess Manag. 2011. PMID: 21184571 Review.
Cited by
-
A review on the structural characterization of nanomaterials for nano-QSAR models.Beilstein J Nanotechnol. 2024 Jul 11;15:854-866. doi: 10.3762/bjnano.15.71. eCollection 2024. Beilstein J Nanotechnol. 2024. PMID: 39015425 Free PMC article. Review.
-
Developing a Multi-Method Approach for Understanding Cellular Uptake and Biological Response: Investigating Co-Exposure of Macrophage-like Differentiated THP-1 Cells to Al2O3 and CeO2 Nanoparticles.Molecules. 2025 Apr 7;30(7):1647. doi: 10.3390/molecules30071647. Molecules. 2025. PMID: 40286244 Free PMC article.
-
Performance of TiO2/UV-LED-Based Processes for Degradation of Pharmaceuticals: Effect of Matrix Composition and Process Variables.Nanomaterials (Basel). 2022 Jan 17;12(2):295. doi: 10.3390/nano12020295. Nanomaterials (Basel). 2022. PMID: 35055312 Free PMC article.
-
An Insight into the Combined Toxicity of 3,4-Dichloroaniline with Two-Dimensional Nanomaterials: From Classical Mixture Theory to Structure-Activity Relationship.Int J Mol Sci. 2023 Feb 13;24(4):3723. doi: 10.3390/ijms24043723. Int J Mol Sci. 2023. PMID: 36835146 Free PMC article.
-
Review and Prospects on the Ecotoxicity of Mixtures of Nanoparticles and Hybrid Nanomaterials.Environ Sci Technol. 2022 Nov 15;56(22):15238-15250. doi: 10.1021/acs.est.2c03333. Epub 2022 Oct 5. Environ Sci Technol. 2022. PMID: 36196869 Free PMC article. Review.
References
-
- Loewe S., Muischnek H. Über Kombinationswirkungen I. Mitteilung: Hilfsmittel der Fragestellung. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1926;114:313–326. doi: 10.1007/BF01952257. - DOI
-
- Kim J., Kim S., Schaumann G.E. Reliable predictive computational toxicology methods for mixture toxicity: Toward the development of innovative integrated models for environmental risk assessment. Rev. Environ. Sci. Biotechnol. 2013;12:235–256. doi: 10.1007/s11157-012-9286-7. - DOI
-
- Bliss C.I. The toxicity of poisons applied jointly 1. Ann. Appl. Biol. 1939;26:585–615. doi: 10.1111/j.1744-7348.1939.tb06990.x. - DOI
-
- Gaudin T., Rotureau P., Fayet G. Mixture Descriptors toward the Development of Quantitative Structure-Property Relationship Models for the Flash Points of Organic Mixtures. Ind. Eng. Chem. Res. 2015;54:6596–6604. doi: 10.1021/acs.iecr.5b01457. - DOI
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous