Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb;18(2):165-169.
doi: 10.1038/s41592-020-01041-y. Epub 2021 Jan 11.

High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing

Affiliations

High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing

Søren M Karst et al. Nat Methods. 2021 Feb.

Abstract

High-throughput amplicon sequencing of large genomic regions remains challenging for short-read technologies. Here, we report a high-throughput amplicon sequencing approach combining unique molecular identifiers (UMIs) with Oxford Nanopore Technologies (ONT) or Pacific Biosciences circular consensus sequencing, yielding high-accuracy single-molecule consensus sequences of large genomic regions. We applied our approach to sequence ribosomal RNA operon amplicons (~4,500 bp) and genomic sequences (>10,000 bp) of reference microbial communities in which we observed a chimera rate <0.02%. To reach a mean UMI consensus error rate <0.01%, a UMI read coverage of 15× (ONT R10.3), 25× (ONT R9.4.1) and 3× (Pacific Biosciences circular consensus sequencing) is needed, which provides a mean error rate of 0.0042%, 0.0041% and 0.0007%, respectively.

PubMed Disclaimer

References

    1. Meldrum, C., Doyle, M. A. & Tothill, R. W. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin. Biochem. Rev. 32, 177–195 (2011). - PubMed - PMC
    1. Guibert, N. et al. Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer. Ann. Oncol. 29, 1049–1055 (2018). - PubMed - PMC - DOI
    1. Campbell, P. J. et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl Acad. Sci. USA 105, 13081–13086 (2008). - PubMed - PMC - DOI
    1. Goldsmith, D. B., Parsons, R. J., Beyene, D., Salamon, P. & Breitbart, M. Deep sequencing of the viral phoH gene reveals temporal variation, depth-specific composition, and persistent dominance of the same viral phoH genes in the Sargasso Sea. PeerJ 3, e997 (2015). - PubMed - PMC - DOI
    1. Adriaenssens, E. M. & Cowan, D. A. Using signature genes as tools to assess environmental viral ecology and diversity. Appl. Environ. Microbiol. 80, 4470–4480 (2014). - PubMed - PMC - DOI

Publication types

LinkOut - more resources