Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 1:272:116397.
doi: 10.1016/j.envpol.2020.116397. Epub 2021 Jan 2.

Exposure of androgen mimicking environmental chemicals enhances proliferation of prostate cancer (LNCaP) cells by inducing AR expression and epigenetic modifications

Affiliations

Exposure of androgen mimicking environmental chemicals enhances proliferation of prostate cancer (LNCaP) cells by inducing AR expression and epigenetic modifications

Vipendra Kumar Singh et al. Environ Pollut. .

Abstract

Exposure to environmental endocrine disrupting chemicals (EDCs) is highly suspected in prostate carcinogenesis. Though, estrogenicity is the most studied behavior of EDCs, the androgenic potential of most of the EDCs remains elusive. This study investigates the androgen mimicking potential of some common EDCs and their effect in androgen-dependent prostate cancer (LNCaP) cells. Based on the In silico interaction study, all the 8 EDCs tested were found to interact with androgen receptor with different binding energies. Further, the luciferase reporter activity confirmed the androgen mimicking potential of 4 EDCs namely benzo[a]pyrene, dichlorvos, genistein and β-endosulfan. Whereas, aldrin, malathion, tebuconazole and DDT were reported as antiandrogenic in luciferase reporter activity assay. Next, the nanomolar concentration of androgen mimicking EDCs (benzo[a]pyrene, dichlorvos, genistein and β-endosulfan) significantly enhanced the expression of AR protein and subsequent nuclear translocation in LNCaP cells. Our In silico studies further demonstrated that androgenic EDCs also bind with epigenetic regulatory enzymes namely DNMT1 and HDAC1. Moreover, exposure to these EDCs enhanced the protein expression of DNMT1 and HDAC1 in LNCaP cells. These observations suggest that EDCs may regulate proliferation in androgen sensitive LNCaP cells by acting as androgen mimicking ligands for AR signaling as well as by regulating epigenetic machinery. Both androgenic potential and epigenetic modulatory effects of EDCs may underlie the development and growth of prostate cancer.

Keywords: Androgen receptor; DNMT1; Endocrine disrupting chemicals; Epigenetics; HDAC1; Prostate cancer.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources