Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Mar;81(3):872-8.
doi: 10.1172/JCI113397.

Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state

Affiliations
Comparative Study

Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state

M T Huang et al. J Clin Invest. 1988 Mar.

Abstract

The pathway for hepatic glycogen synthesis in the postprandial state was studied in meal-fed rats chronically cannulated in the portal vein. Plasma glucose concentration in the portal vein was found to be 4.50 +/- 1.01 mM (mean +/- SE; n = 3) before a meal and 11.54 +/- 0.70 mM (mean +/- SE; n = 4) after a meal in rats meal-fed a diet consisting of 100% commercial rat chow for 7 d. The hepatic-portal difference of plasma glucose concentration showed that liver released glucose in the fasted state and either extracted or released glucose after feeding depending on plasma glucose concentration in the portal vein. The concentration of portal vein glucose at which liver changes from glucose releasing to glucose uptake was 8 mM, the Km of glucokinase [E.C. 2.7.1.12]. The rate of glycogen synthesis in liver during meal-feeding was found to be approximately 1 mumol glucosyl U/g wet wt/min in rats meal-fed a 50% glucose supplemented chow diet. The relative importance of the direct vs. indirect pathway for the replenishment of hepatic glycogen was determined by the incorporation of [3-3H,U-14C]glucose into liver glycogen. Labeled glucose was injected into the portal vein at the end of meal-feeding. The ratio of 3H/14C in the glucosyl units of glycogen was found to be 83-92% of the ratio in liver free glucose six minutes after the injection, indicating that the majority of exogenous glucose incorporated into glycogen did not go through glycolysis. The percent contribution of the direct versus indirect pathway was quantitated from the difference in the relative specific activity (RSA) of [3H] and [14C]-glycogen in rats infused with [3-3H,U-14C]glucose. No significant difference was found between the RSA of [3H]glycogen and [14C]glycogen, indicating further that the pathway for glycogen synthesis in liver from exogenous glucose is from the direct pathway. Our results do not support the thesis that the majority of liver glycogen is synthesized from glucose-6-phosphate derived from gluconeogenesis. Reasons for the discrepancy between current findings and other reports supporting the indirect pathway for glycogen synthesis in the liver are discussed.

PubMed Disclaimer

References

    1. Biochemistry. 1967 Jan;6(1):6-11 - PubMed
    1. Am J Physiol. 1965 Feb;208:307-16 - PubMed
    1. J Neurochem. 1973 Jun;20(6):1543-54 - PubMed
    1. Biochem J. 1974 Jul;142(1):161-70 - PubMed
    1. J Appl Physiol. 1975 Feb;38(2):358-9 - PubMed

Publication types