The Ubiquitin Proteasome System and Skin Fibrosis
- PMID: 33433895
- DOI: 10.1007/s40291-020-00509-z
The Ubiquitin Proteasome System and Skin Fibrosis
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved way to regulate protein turnover in cells. The UPS hydrolyzes and destroys variant or misfolded proteins and finely regulates proteins involved in differentiation, apoptosis, and other biological processes. This system is a key regulatory factor in the proliferation, differentiation, and collagen secretion of skin fibroblasts. E3 ubiquitin protein ligases Parkin and NEDD4 regulate multiple signaling pathways in keloid. Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) binding with deubiquitinase USP10 can induce p53 destabilization and promote keloid-derived fibroblast proliferation. The UPS participates in the occurrence and development of hypertrophic scars by regulating the transforming growth factor (TGF)-β/Smad signaling pathway. An initial study suggests that TNFα-induced protein 3 (TNFAIP3) polymorphisms may be significantly associated with scleroderma susceptibility in individuals of Caucasian descent. Sumoylation and multiple ubiquitin ligases, including Smurfs, UFD2, and KLHL42, play vital roles in scleroderma by targeting the TGF-β/Smad signaling pathway. In the future, drugs targeting E3 ligases and deubiquitinating enzymes have great potential for the treatment of skin fibrosis.
Similar articles
-
NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor.Biochem J. 2005 Mar 15;386(Pt 3):461-70. doi: 10.1042/BJ20040738. Biochem J. 2005. PMID: 15496141 Free PMC article.
-
TRAF4 Promotes Fibroblast Proliferation in Keloids by Destabilizing p53 via Interacting with the Deubiquitinase USP10.J Invest Dermatol. 2019 Sep;139(9):1925-1935.e5. doi: 10.1016/j.jid.2019.03.1136. Epub 2019 Mar 30. J Invest Dermatol. 2019. PMID: 30940456
-
[Research advances in the role of ubiquitin-proteasome pathway in hypertrophic scar].Zhonghua Shao Shang Za Zhi. 2020 Aug 20;36(8):762-766. doi: 10.3760/cma.j.cn501120-20190702-00291. Zhonghua Shao Shang Za Zhi. 2020. PMID: 32829623 Chinese.
-
E3 ubiquitin ligase: A potential regulator in fibrosis and systemic sclerosis.Cell Immunol. 2016 Aug-Sep;306-307:1-8. doi: 10.1016/j.cellimm.2016.07.003. Epub 2016 Jul 5. Cell Immunol. 2016. PMID: 27406900 Review.
-
Regulation of Ubiquitin Enzymes in the TGF-β Pathway.Int J Mol Sci. 2017 Apr 20;18(4):877. doi: 10.3390/ijms18040877. Int J Mol Sci. 2017. PMID: 28425962 Free PMC article. Review.
Cited by
-
Identification of hub gene for the pathogenic mechanism and diagnosis of MASLD by enhanced bioinformatics analysis and machine learning.PLoS One. 2025 May 28;20(5):e0324972. doi: 10.1371/journal.pone.0324972. eCollection 2025. PLoS One. 2025. PMID: 40435176 Free PMC article.
-
Identification of novel biomarkers of ferroptosis involved in keloid based on bioinformatics analysis.Int Wound J. 2024 Jan;21(1):e14606. doi: 10.1111/iwj.14606. Int Wound J. 2024. PMID: 38272797 Free PMC article.
-
Inhibition of miR-23b-3p Ameliorates Scar-Like Phenotypes of Keloid Fibroblasts by Facilitating A20 Expression.Clin Cosmet Investig Dermatol. 2022 Aug 6;15:1549-1559. doi: 10.2147/CCID.S367347. eCollection 2022. Clin Cosmet Investig Dermatol. 2022. PMID: 35967914 Free PMC article.
-
MALAT1 Knockdown Inhibits the Proliferation, Migration, and Collagen Deposition of Human Hypertrophic Scar Fibroblasts via Targeting miR-29a-3p/Smurf2 Axis.Clin Cosmet Investig Dermatol. 2024 Jun 12;17:1387-1404. doi: 10.2147/CCID.S460845. eCollection 2024. Clin Cosmet Investig Dermatol. 2024. PMID: 38881700 Free PMC article.
-
The Research Progress in Physiological and Pathological Functions of TRAF4.Front Oncol. 2022 Feb 15;12:842072. doi: 10.3389/fonc.2022.842072. eCollection 2022. Front Oncol. 2022. PMID: 35242717 Free PMC article. Review.
References
-
- Zhao X, Psarianos P, Ghoraie LS, Yip K, Goldstein D, Gilbert R, et al. Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis. Nat Metab. 2019;1(1):147–57. https://doi.org/10.1038/s42255-018-0008-5 . - DOI - PubMed
-
- Griffin MF, des Jardins-Park HE, Mascharak S, Borrelli MR, Longaker MT. Understanding the impact of fibroblast heterogeneity on skin fibrosis. Dis Models Mech. 2020. https://doi.org/10.1242/dmm.044164 . - DOI
-
- Do NN, Eming SA. Skin fibrosis: models and mechanisms. Curr Res Transl Med. 2016;64(4):185–93. https://doi.org/10.1016/j.retram.2016.06.003 . - DOI - PubMed
-
- Li Y, Zhang J, Lei Y, Lyu L, Zuo R, Chen T. MicroRNA-21 in skin fibrosis: potential for diagnosis and treatment. Mol Diagn Ther. 2017;21(6):633–42. https://doi.org/10.1007/s40291-017-0294-8 . - DOI - PubMed
-
- Coentro JQ, Pugliese E, Hanley G, Raghunath M, Zeugolis DI. Current and upcoming therapies to modulate skin scarring and fibrosis. Adv Drug Deliv Rev. 2019;146:37–59. https://doi.org/10.1016/j.addr.2018.08.009 . - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous