Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 10:768:144453.
doi: 10.1016/j.scitotenv.2020.144453. Epub 2021 Jan 6.

Effects of elevated CO2 on arbuscular mycorrhizal fungi associated with Robinia pseudoacacia L. grown in cadmium-contaminated soils

Affiliations

Effects of elevated CO2 on arbuscular mycorrhizal fungi associated with Robinia pseudoacacia L. grown in cadmium-contaminated soils

Lu Wang et al. Sci Total Environ. .

Abstract

As symbionts capable of reciprocal rewards, arbuscular mycorrhizal fungi (AMF) can alleviate heavy metal toxicity to host plants and are easily influenced by elevated CO2 (ECO2). Although the individual effects of ECO2 and cadmium (Cd) on AMF have been widely reported, the response of AMF to ECO2 + Cd receives little attention. We evaluated the combined effects of ECO2 and Cd on AMF in the rhizosphere soil and roots of Robinia pseudoacacia L. seedlings. Under ECO2 + Cd relative to Cd, AMF gene copies and richness in rhizosphere soils increased (p < 0.05) and the diversity reduced (p < 0.05) at 4.5 mg Cd kg-1 dry soil; whereas root AMF abundance at 4.5 mg Cd kg-1 dry soil and the diversity and richness reduced (p < 0.05). Elevated CO2 caused obvious differences in the dominant genera abundance between rhizosphere soils and roots upon Cd exposure. Responses of C, water-soluble organic nitrogen (WSON), pH, and diethylene triamine penta-acetic acid (DTPA)-Cd in rhizosphere soils and root N to ECO2 shaped dominant genera in Cd-polluted rhizosphere soils. Levels of DTPA-Cd, WSON, C and pH in rhizosphere soils and C/N ratio, N, and Cd in roots to ECO2 affected (p < 0.05) dominant genera in roots under Cd exposure. AMF richness and diversity were lower in roots than in rhizosphere soils. Elevated CO2 altered AMF communities in rhizosphere soils and roots of R. pseudoacacia seedlings exposed to Cd. AMF associated with R. pseudoacacia may be useful/interesting to be used for improving the phytoremediation of Cd under ECO2.

Keywords: Abundance; Arbuscular mycorrhizal fungi; Cadmium-contaminated soils; Community structure; Elevated CO(2); Phytoremediation.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources