Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan;88(1):20-32.
doi: 10.1055/a-1326-2497. Epub 2021 Jan 12.

Quantification of Silymarin in Silybi mariani fructus: Challenging the Analytical Performance of Benchtop vs. Handheld NIR Spectrometers on Whole Seeds

Affiliations

Quantification of Silymarin in Silybi mariani fructus: Challenging the Analytical Performance of Benchtop vs. Handheld NIR Spectrometers on Whole Seeds

Sophia Mayr et al. Planta Med. 2022 Jan.

Abstract

The content of the flavonolignan mixture silymarin and its individual components (silichristin, silidianin, silibinin A, silibinin B, isosilibinin A, and isosilibinin B) in whole and milled milk thistle seeds (Silybi mariani fructus) was analyzed with near-infrared spectroscopy. The analytical performance of one benchtop and two handheld near-infrared spectrometers was compared. Reference analysis was performed with HPLC following a Soxhlet extraction (European Pharmacopoeia) and a more resource-efficient ultrasonic extraction. The reliability of near-infrared spectral analysis determined through partial least squares regression models constructed independently for the spectral datasets obtained by the three spectrometers was as follows. The benchtop device NIRFlex N-500 performed the best both for milled and whole seeds with a root mean square error of CV between 0.01 and 0.17%. The handheld spectrometer MicroNIR 2200 as well as the microPHAZIR provided a similar performance (root mean square error of CV between 0.01 and 0.18% and between 0.01 and 0.23%, respectively). We carried out quantum chemical simulation of near-infrared spectra of silichristin, silidianin, silibinin, and isosilibinin for interpretation of the results of spectral analysis. This provided understanding of the absorption regions meaningful for the calibration. Further, it helped to better separate how the chemical and physical properties of the samples affect the analysis. While the study demonstrated that milling of samples slightly improves the performance, it was deemed to be critical only for the analysis carried out with the microPHAZIR. This study evidenced that rapid and nondestructive quantification of silymarin and individual flavonolignans is possible with miniaturized near-infrared spectroscopy in whole milk thistle seeds.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

LinkOut - more resources