Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 16;224(Pt 4):jeb237156.
doi: 10.1242/jeb.237156.

Effects of variable oxygen regimes on mitochondrial bioenergetics and reactive oxygen species production in a marine bivalve, Mya arenaria

Affiliations

Effects of variable oxygen regimes on mitochondrial bioenergetics and reactive oxygen species production in a marine bivalve, Mya arenaria

Natascha Ouillon et al. J Exp Biol. .

Abstract

Estuarine and coastal benthic organisms often experience fluctuations in oxygen levels that can negatively impact their mitochondrial function and aerobic metabolism. To study these impacts, we exposed a common sediment-dwelling bivalve, the soft-shell clam Mya arenaria, for 21 days to chronic hypoxia (PO2 ∼4.1 kPa), cyclic hypoxia (PO2 ∼12.7-1.9 kPa, mean 5.7 kPa) or normoxia (PO2 ∼21.1 kPa). pH was manipulated to mimic the covariation in CO2/pH and oxygen levels in coastal hypoxic zones. Mitochondrial respiration, including proton leak, the capacity for oxidative phosphorylation (OXPHOS), the maximum activity of the electron transport system (ETS), reactive oxygen species (ROS) production, and activity and oxygen affinity of cytochrome c oxidase (CCO) were assessed. Acclimation to constant hypoxia did not affect the studied mitochondrial traits except for a modest decrease in the OXPHOS coupling efficiency. Cyclic hypoxia had no effect on OXPHOS or ETS capacity, but increased proton leak and lowered mitochondrial OXPHOS coupling efficiency. Furthermore, mitochondria of clams acclimated to cyclic hypoxia had higher rates of ROS generation compared with the clams acclimated to normoxia or chronic hypoxia. CCO activity was upregulated under cyclic hypoxia, but oxygen affinity of CCO did not change. These findings indicate that long-term cyclic hypoxia has a stronger impact on the mitochondria of M. arenaria than chronic hypoxia and might lead to impaired ATP synthesis, higher costs of mitochondrial maintenance and oxidative stress. These changes might negatively affect populations of M. arenaria in the coastal Baltic Sea under increasing hypoxia pressure.

Keywords: Bivalve; Chronic hypoxia; Cyclic hypoxia; Electron leak; Mitochondrial proton leak; Oxidative phosphorylation; Oxidative stress.

PubMed Disclaimer

Conflict of interest statement

Competing interestsThe authors declare no competing or financial interests.

Similar articles

Cited by

Publication types

LinkOut - more resources