Recurrent network dynamics shape direction selectivity in primary auditory cortex
- PMID: 33436635
- PMCID: PMC7804939
- DOI: 10.1038/s41467-020-20590-6
Recurrent network dynamics shape direction selectivity in primary auditory cortex
Abstract
Detecting the direction of frequency modulation (FM) is essential for vocal communication in both animals and humans. Direction-selective firing of neurons in the primary auditory cortex (A1) has been classically attributed to temporal offsets between feedforward excitatory and inhibitory inputs. However, it remains unclear how cortical recurrent circuitry contributes to this computation. Here, we used two-photon calcium imaging and whole-cell recordings in awake mice to demonstrate that direction selectivity is not caused by temporal offsets between synaptic currents, but by an asymmetry in total synaptic charge between preferred and non-preferred directions. Inactivation of cortical somatostatin-expressing interneurons (SOM cells) reduced direction selectivity, revealing its cortical contribution. Our theoretical models showed that charge asymmetry arises due to broad spatial topography of SOM cell-mediated inhibition which regulates signal amplification in strongly recurrent circuitry. Together, our findings reveal a major contribution of recurrent network dynamics in shaping cortical tuning to behaviorally relevant complex sounds.
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
Network-Level Control of Frequency Tuning in Auditory Cortex.Neuron. 2017 Jul 19;95(2):412-423.e4. doi: 10.1016/j.neuron.2017.06.019. Epub 2017 Jul 6. Neuron. 2017. PMID: 28689982 Free PMC article.
-
Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.Cereb Cortex. 2015 Jul;25(7):1782-91. doi: 10.1093/cercor/bht417. Epub 2014 Jan 14. Cereb Cortex. 2015. PMID: 24425250 Free PMC article.
-
Topography and synaptic shaping of direction selectivity in primary auditory cortex.Nature. 2003 Jul 10;424(6945):201-5. doi: 10.1038/nature01796. Nature. 2003. PMID: 12853959
-
Synaptic mechanisms underlying auditory processing.Curr Opin Neurobiol. 2006 Aug;16(4):371-6. doi: 10.1016/j.conb.2006.06.015. Epub 2006 Jul 13. Curr Opin Neurobiol. 2006. PMID: 16842988 Review.
-
How do auditory cortex neurons represent communication sounds?Hear Res. 2013 Nov;305:102-12. doi: 10.1016/j.heares.2013.03.011. Epub 2013 Apr 17. Hear Res. 2013. PMID: 23603138 Review.
Cited by
-
Translaminar recurrence from layer 5 suppresses superficial cortical layers.Nat Commun. 2022 May 11;13(1):2585. doi: 10.1038/s41467-022-30349-w. Nat Commun. 2022. PMID: 35546553 Free PMC article.
-
Different state-dependence of population codes across cortex.bioRxiv [Preprint]. 2024 May 26:2024.05.23.595581. doi: 10.1101/2024.05.23.595581. bioRxiv. 2024. PMID: 38826351 Free PMC article. Preprint.
-
Brain-inspired multisensory integration neural network for cross-modal recognition through spatiotemporal dynamics and deep learning.Cogn Neurodyn. 2024 Dec;18(6):3615-3628. doi: 10.1007/s11571-023-09932-4. Epub 2023 Feb 2. Cogn Neurodyn. 2024. PMID: 39712112
-
Inhibitory gating of coincidence-dependent sensory binding in secondary auditory cortex.Nat Commun. 2021 Jul 29;12(1):4610. doi: 10.1038/s41467-021-24758-6. Nat Commun. 2021. PMID: 34326331 Free PMC article.
-
A spatial code for temporal information is necessary for efficient sensory learning.Sci Adv. 2025 Jan 10;11(2):eadr6214. doi: 10.1126/sciadv.adr6214. Epub 2025 Jan 8. Sci Adv. 2025. PMID: 39772691 Free PMC article.
References
-
- Griffin, D. R. Listening in the Dark, The Acoustic Orientation of Bats and Men. (Yale University Press, 1958).
-
- Reichardt, W. Sensory Communication. (MIT Press, 1961).
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases