Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 14;11(18):4766-4772.
doi: 10.1039/D0SC00624F. Epub 2020 Apr 20.

Shape-adaptive single-molecule magnetism and hysteresis up to 14 K in oxide clusterfullerenes Dy2O@C72 and Dy2O@C74 with fused pentagon pairs and flexible Dy-(μ2-O)-Dy angle

Affiliations

Shape-adaptive single-molecule magnetism and hysteresis up to 14 K in oxide clusterfullerenes Dy2O@C72 and Dy2O@C74 with fused pentagon pairs and flexible Dy-(μ2-O)-Dy angle

Georgios Velkos et al. Chem Sci. .

Abstract

Dysprosium oxide clusterfullerenes Dy2O@Cs(10528)-C72 and Dy2O@C2(13333)-C74 are synthesized and characterized by single-crystal X-ray diffraction. Carbon cages of both molecules feature two adjacent pentagon pairs. These pentalene units determine positions of endohedral Dy ions hence the shape of the Dy2O cluster, which is bent in Dy2O@C72 but linear in Dy2O@C74. Both compounds show slow relaxation of magnetization and magnetic hysteresis. Nearly complete cancelation of ferromagnetic dipolar and antiferromagnetic exchange Dy…Dy interactions leads to unusual magnetic properties. Dy2O@C74 exhibits zero-field quantum tunneling of magnetization and magnetic hysteresis up to 14 K, the highest temperature among Dy-clusterfullerenes.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Characterization of isolated Dy2O@C72 and Dy2O@C74: (a) HPLC profiles (BuckyPrep column, toluene as eluent, flow rate 4 mL min–1; solvent peak appears at 6 min); (b) LDI mass-spectra in a positive-ion mode; (c) UV-Vis-NIR absorption spectra in toluene (the inset shows magnification of the low-energy range).
Fig. 2
Fig. 2. (a and b) Thermal ellipsoids of Dy2O@C2n·NiII(OEP) crystals with 30% probability showing only the major dysprosium sites: (a) Dy2O@Cs(10528)–C72, (b) Dy2O@C2(13333)–C74; the solvent molecules and minor Dy sites are omitted, Dy is green, O is red, Ni is purple, N is blue, C is grey, adjacent-pentagon pairs are highlighted in orange. (c and d) Interaction of the major Dy2O site with the closest cage motif in (c) Dy2O@C72, and (d) Dy2O@C74. (e and f) Endohedral Dy2O units with disordered Dy sites and selected structural parameters in (e) Dy2O@C72, and (f) Dy2O@C74.
Fig. 3
Fig. 3. Magnetic hysteresis curves of Dy2O@C72 (a) and Dy2O@C74 (b) measured with the sweep rate 2.9 mT s–1. Insets show comparison of χFC and χZFC curves (μ0H = 0.2 T, temperature sweep rate 5 K min–1); dashed blue lines denote Tirrev as the temperature, at which χFC and χZFC curves bifurcate.
Fig. 4
Fig. 4. Magnetization relaxation times of Dy2O@C72 and Dy2O@C74: (a) Field dependence of τM at 1.8 K (Dy2O@C72) and 2.5 K (Dy2O@C74). Note that the smallest field for Dy2O@C74 is 0.05 T since the measurements in zero field are not possible because of the fast QTM process; (b) Temperature dependence of τM in two different fields, dots are measured values, solid lines are fits by a combination of Raman and direct mechanisms (eqn (1)), dashed lines are contributions of Raman process for Dy2O@C72 (blue) and Dy2O@74 (red).
Fig. 5
Fig. 5. (a) DFT-optimized molecular structures of Dy2O@C72 and Dy2O@C74 showing alignment of magnetic moment in ferromagnetically-coupled ground-state doublet (Dy is green, O is red, adjacent pentagon pairs are rose; magnetic moments of Dy ions are shown as green arrows). (b) CASSCF/RASSI-computed ligand-field splitting for Dy3+ ions in Dy2O@C72 and Dy2O@C74; the thickness of light blue lines corresponds to transition probability. The insets in (b) show Dy-coordinated fragments of the fullerene cage and quantization axis of Dy (green line); Dy–C distances shorter than 2.6 Å are shown as bonds. The scale on the left shows the energy in cm–1, on the right in K.

References

    1. Yang S., Wei T., Jin F. Chem. Soc. Rev. 2017;46:5005. - PubMed
    2. Popov A. A., Endohedral Fullerenes: Electron Transfer and Spin, Springer International Publishing, Cham, 2017.
    3. Popov A. A., Yang S., Dunsch L. Chem. Rev. 2013;113:5989. - PubMed
    4. Lu X., Shen W., Hu S. Chem.–Eur. J. 2020 doi: 10.1002/chem.201905306. - DOI - PubMed
    1. Liu F., Wang S., Gao C.-L., Deng Q., Zhu X., Kostanyan A., Westerström R., Jin F., Xie S.-Y., Popov A. A., Greber T., Yang S. Angew. Chem., Int. Ed. 2017;56:1830. - PMC - PubMed
    2. Liu F., Gao C.-L., Deng Q., Zhu X., Kostanyan A., Westerström R., Wang S., Tan Y.-Z., Tao J., Xie S.-Y., Popov A. A., Greber T. J. Am. Chem. Soc. 2016;138:14764. - PMC - PubMed
    3. Westerström R., Dreiser J., Piamonteze C., Muntwiler M., Weyeneth S., Krämer K., Liu S.-X., Decurtins S., Popov A., Yang S., Dunsch L., Greber T. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;89:060406.
    4. Dreiser J., Westerström R., Zhang Y., Popov A. A., Dunsch L., Krämer K., Liu S.-X., Decurtins S., Greber T. Chem.–Eur. J. 2014;20:13536. - PubMed
    5. Westerström R., Dreiser J., Piamonteze C., Muntwiler M., Weyeneth S., Brune H., Rusponi S., Nolting F., Popov A., Yang S., Dunsch L., Greber T. J. Am. Chem. Soc. 2012;134:9840. - PubMed
    6. Wang T., Wang C. Small. 2019;15:1901522. - PubMed
    7. Nie M., Xiong J., Zhao C., Meng H., Zhang K., Han Y., Li J., Wang B., Feng L., Wang C., Wang T. Nano Res. 2019;12:1727.
    1. Spree L., Popov A. A. Dalton Trans. 2019;48:2861. - PMC - PubMed
    2. Krylov D., Liu F., Brandenburg A., Spree L., Bon V., Kaskel S., Wolter A., Buchner B., Avdoshenko S., Popov A. A. Phys. Chem. Chem. Phys. 2018;20:11656. - PMC - PubMed
    3. Chen C. H., Krylov D. S., Avdoshenko S. M., Liu F., Spree L., Westerström R., Bulbucan C., Studniarek M., Dreiser J., Wolter A. U. B., Büchner B., Popov A. A. Nanoscale. 2018;10:11287. - PMC - PubMed
    4. Schlesier C., Spree L., Kostanyan A., Westerström R., Brandenburg A., Wolter A. U. B., Yang S., Greber T., Popov A. A. Chem. Commun. 2018;54:9730. - PMC - PubMed
    5. Krylov D. S., Liu F., Avdoshenko S. M., Spree L., Weise B., Waske A., Wolter A. U. B., Büchner B., Popov A. A. Chem. Commun. 2017;53:7901. - PMC - PubMed
    6. Liu F., Krylov D. S., Spree L., Avdoshenko S. M., Samoylova N. A., Rosenkranz M., Kostanyan A., Greber T., Wolter A. U. B., Büchner B., Popov A. A. Nat. Commun. 2017;8:16098. - PMC - PubMed
    7. Chen C.-H., Krylov D. S., Avdoshenko S. M., Liu F., Spree L., Yadav R., Alvertis A., Hozoi L., Nenkov K., Kostanyan A., Greber T., Wolter A. U. B. Chem. Sci. 2017;8:6451. - PMC - PubMed
    8. Greber T., Seitsonen A. P., Hemmi A., Dreiser J., Stania R., Matsui F., Muntwiler M., Popov A. A., Westerström R. Phys. Rev. Mater. 2019;3:014409.
    9. Junghans K., Schlesier C., Kostanyan A., Samoylova N. A., Deng Q., Rosenkranz M., Schiemenz S., Westerström R., Greber T., Büchner B., Popov A. A. Angew. Chem., Int. Ed. 2015;54:13411. - PMC - PubMed
    10. Westerström R., Uldry A.-C., Stania R., Dreiser J., Piamonteze C., Muntwiler M., Matsui F., Rusponi S., Brune H., Yang S., Popov A., Büchner B. Phys. Rev. Lett. 2015;114:087201. - PubMed
    11. Brandenburg A., Krylov D. S., Beger A., Wolter A. U. B., Büchner B., Popov A. A. Chem. Commun. 2018;54:10683. - PMC - PubMed
    1. Harriman K. L. M., Errulat D., Murugesu M. Trends in Chemistry. 2019;1:425.
    2. Bar A. K., Kalita P., Singh M. K., Rajaraman G., Chandrasekhar V. Coord. Chem. Rev. 2018;367:163.
    3. Day B. M., Guo F.-S., Layfield R. A. Acc. Chem. Res. 2018;51:1880. - PubMed
    4. Liu J.-L., Chen Y.-C., Tong M.-L. Chem. Soc. Rev. 2018;47:2431. - PubMed
    5. Zhu Z., Guo M., Li X.-L., Tang J. Coord. Chem. Rev. 2019;378:350.
    6. Dreiser J. J. Phys.: Condens. Matter. 2015;27:183203. - PubMed
    7. Liddle S. T., van Slageren J. Chem. Soc. Rev. 2015;44:6655. - PubMed
    8. Luzon J., Sessoli R. Dalton Trans. 2012;41:13556. - PubMed
    9. Woodruff D. N., Winpenny R. E. P., Layfield R. A. Chem. Rev. 2013;113:5110. - PubMed
    10. Goodwin C. A. P., Ortu F., Reta D., Chilton N. F., Mills D. P. Nature. 2017;548:439. - PubMed
    11. Guo F.-S., Day B. M., Chen Y.-C., Tong M.-L., Mansikkamäki A., Layfield R. A. Science. 2018;362:1400. - PubMed
    12. McClain K. R., Gould C. A., Chakarawet K., Teat S., Groshens T. J., Long J. R., Harvey B. G. Chem. Sci. 2018;9:8492. - PMC - PubMed
    13. Gould C., McClain K. R., Yu J., Groshens T. J., Furche F., Harvey B. G., Long J. R. J. Am. Chem. Soc. 2019;141:12967. - PubMed
    14. Liu F., Velkos G., Krylov D. S., Spree L., Zalibera M., Ray R., Samoylova N. A., Chen C.-H., Rosenkranz M., Schiemenz S., Ziegs F., Nenkov K. Nat. Commun. 2019;10:571. - PMC - PubMed
    15. Velkos G., Krylov D., Kirkpatrick K., Spree L., Dubrovin V., Büchner B., Avdoshenko S., Bezmelnitsyn V., Davis S., Faust P., Duchamp J., Dorn H. Angew. Chem., Int. Ed. 2019;58:5891. - PMC - PubMed
    16. Liu F., Spree L., Krylov D. S., Velkos G., Avdoshenko S. M., Popov A. A. Acc. Chem. Res. 2019;52:2981. - PMC - PubMed
    1. Abella L., Wang Y., Rodríguez-Fortea A., Chen N., Poblet J. M. Inorg. Chim. Acta. 2017;468:91.
    2. Feng L., Hao Y., Liu A., Slanina Z. Acc. Chem. Res. 2019;52:1802. - PubMed
    3. Liu A., Nie M., Hao Y., Yang Y., Wang T., Slanina Z., Cong H., Feng L., Wang C., Uhlik F. Inorg. Chem. 2019;58:4774. - PubMed
    4. Cong H., Liu A., Hao Y., Feng L., Slanina Z., Uhlik F. Inorg. Chem. 2019;58:10905. - PubMed
    5. Tang Q., Abella L., Hao Y., Li X., Wan Y., Rodríguez-Fortea A., Poblet J. M., Feng L., Chen N. Inorg. Chem. 2016;55:1926. - PubMed
    6. Hao Y., Tang Q., Li X., Zhang M., Wan Y., Feng L., Chen N., Slanina Z., Adamowicz L., Uhlík F. Inorg. Chem. 2016;55:11354. - PubMed
    7. Yang T., Hao Y., Abella L., Tang Q., Li X., Wan Y., Rodríguez-Fortea A., Poblet J. M., Feng L., Chen N. Chem.–Eur. J. 2015;21:11110. - PubMed
    8. Tang Q., Abella L., Hao Y., Li X., Wan Y., Rodríguez-Fortea A., Poblet J. M., Feng L., Chen N. Inorg. Chem. 2015;54:9845. - PubMed
    9. Zhang M., Hao Y., Li X., Feng L., Yang T., Wan Y., Chen N., Slanina Z., Uhlik F., Cong H. J. Phys. Chem. C. 2014;118:28883.
    10. Mercado B. Q., Stuart M. A., Mackey M. A., Pickens J. E., Confait B. S., Stevenson S., Easterling M. L., Valencia R., Rodriguez-Fortea A., Poblet J. M., Olmstead M. M., Balch A. L. J. Am. Chem. Soc. 2010;132:12098. - PubMed