Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 13;18(1):4.
doi: 10.1186/s12979-021-00215-2.

Macrophage function in the elderly and impact on injury repair and cancer

Affiliations
Review

Macrophage function in the elderly and impact on injury repair and cancer

L Duong et al. Immun Ageing. .

Abstract

Older age is associated with deteriorating health, including escalating risk of diseases such as cancer, and a diminished ability to repair following injury. This rise in age-related diseases/co-morbidities is associated with changes to immune function, including in myeloid cells, and is related to immunosenescence. Immunosenescence reflects age-related changes associated with immune dysfunction and is accompanied by low-grade chronic inflammation or inflammageing. This is characterised by increased levels of circulating pro-inflammatory cytokines such as tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6. However, in healthy ageing, there is a concomitant age-related escalation in anti-inflammatory cytokines such as transforming growth factor-β1 (TGF-β1) and IL-10, which may overcompensate to regulate the pro-inflammatory state. Key inflammatory cells, macrophages, play a role in cancer development and injury repair in young hosts, and we propose that their role in ageing in these scenarios may be more profound. Imbalanced pro- and anti-inflammatory factors during ageing may also have a significant influence on macrophage function and further impact the severity of age-related diseases in which macrophages are known to play a key role. In this brief review we summarise studies describing changes to inflammatory function of macrophages (from various tissues and across sexes) during healthy ageing. We also describe age-related diseases/co-morbidities where macrophages are known to play a key role, focussed on injury repair processes and cancer, plus comment briefly on strategies to correct for these age-related changes.

Keywords: Age‐related diseases; Cancer; Inflammation; Injury repair; Macrophages.

PubMed Disclaimer

Conflict of interest statement

The authors declare they have no competing interests.

Figures

Fig. 1
Fig. 1
Age-related changes to macrophages during musculoskeletal repair and cancer . Following musculoskeletal injury or tumor growth, there may be changes associated with tissue-resident macrophages and tissue site during ageing (1). This may lead to decreased or altered chemotactic signals (2), driven by factors such as CSF-1, CCL2 or CCL5. Bone marrow and splenic myeloid cells are increased during ageing (3) and can supply macrophages to the tumor and injury site, however this could be further impacted by inflammageing factors such as TNF, IL-1β and IL-6. Macrophages during ageing generally display reduced capacity for phagocytosis (4). This may lead to altered transitioning from pro-inflammatory to reparative macrophages (5), which can also be driven by factors such as IL-4, IL-10 and TGF-β1. Studies are conflicting during ageing as to whether there are increased or decreased macrophages following musculoskeletal injury or during tumor growth (6). Age-associated changes are shown as increased (↑); decrease (↓); unknown (?). This Figure was created with BioRender.com
Fig. 2
Fig. 2
Strategies to target macrophages during age-related diseases. Potential strategies to target macrophages during ageing could include inhibiting recruitment via CSF-1R blockade (1), restoring metabolic function via inhibition of CD38 (2), targeting inflammageing via rapamycin/senolytics (3), anti-TNF (4), transfer of young serum/plasma/blood products (5), or reducing intracellular MAPK signalling leading to increased efferocytosis (6). Age-associated changes are shown as increased (↑); decrease (↓); unknown (?). This Figure was created with BioRender.com

References

    1. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37. doi: 10.1038/nri3073. - DOI - PMC - PubMed
    1. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–55. doi: 10.1038/nature12034. - DOI - PMC - PubMed
    1. Kale A, Sharma A, Stolzing A, Desprez PY, Campisi J. Role of immune cells in the removal of deleterious senescent cells. Immun Ageing. 2020;17:16. doi: 10.1186/s12979-020-00187-9. - DOI - PMC - PubMed
    1. Gordon S, Pluddemann A, Martinez Estrada F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev. 2014;262(1):36–55. doi: 10.1111/imr.12223. - DOI - PMC - PubMed
    1. Locati M, Curtale G, Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu Rev Pathol. 2020;15:123–47. doi: 10.1146/annurev-pathmechdis-012418-012718. - DOI - PMC - PubMed

LinkOut - more resources