This is a preprint.
Immunological memory to SARS-CoV-2 assessed for up to eight months after infection
- PMID: 33442687
- PMCID: PMC7805444
- DOI: 10.1101/2020.11.15.383323
Immunological memory to SARS-CoV-2 assessed for up to eight months after infection
Update in
-
Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection.Science. 2021 Feb 5;371(6529):eabf4063. doi: 10.1126/science.abf4063. Epub 2021 Jan 6. Science. 2021. PMID: 33408181 Free PMC article.
Abstract
Understanding immune memory to SARS-CoV-2 is critical for improving diagnostics and vaccines, and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥ 6 months post-infection. IgG to the Spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month post symptom onset. SARS-CoV-2-specific CD4 + T cells and CD8 + T cells declined with a half-life of 3-5 months. By studying antibody, memory B cell, CD4 + T cell, and CD8 + T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.
Conflict of interest statement
Figures





Similar articles
-
Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection.Science. 2021 Feb 5;371(6529):eabf4063. doi: 10.1126/science.abf4063. Epub 2021 Jan 6. Science. 2021. PMID: 33408181 Free PMC article.
-
Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells.medRxiv [Preprint]. 2021 Jun 18:2021.04.19.21255739. doi: 10.1101/2021.04.19.21255739. medRxiv. 2021. Update in: Cell Rep Med. 2021 Jul 20;2(7):100354. doi: 10.1016/j.xcrm.2021.100354. PMID: 33948610 Free PMC article. Updated. Preprint.
-
Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6-8 months after the infection.Med. 2021 Mar 12;2(3):281-295.e4. doi: 10.1016/j.medj.2021.02.001. Epub 2021 Feb 10. Med. 2021. PMID: 33589885 Free PMC article.
-
Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines.Immunol Rev. 2022 Sep;310(1):27-46. doi: 10.1111/imr.13089. Epub 2022 Jun 22. Immunol Rev. 2022. PMID: 35733376 Free PMC article. Review.
-
Infection and Immune Memory: Variables in Robust Protection by Vaccines Against SARS-CoV-2.Front Immunol. 2021 May 11;12:660019. doi: 10.3389/fimmu.2021.660019. eCollection 2021. Front Immunol. 2021. PMID: 34046033 Free PMC article. Review.
Cited by
-
Mathematical modeling of multiple pathways in colorectal carcinogenesis using dynamical systems with Kronecker structure.PLoS Comput Biol. 2021 May 18;17(5):e1008970. doi: 10.1371/journal.pcbi.1008970. eCollection 2021 May. PLoS Comput Biol. 2021. PMID: 34003820 Free PMC article.
-
Infection in asymptomatic carriers of SARS-CoV-2 can interfere with the achievement of robust immunity on a population scale.J Gen Virol. 2021 Nov;102(11):001684. doi: 10.1099/jgv.0.001684. J Gen Virol. 2021. PMID: 34788210 Free PMC article.
-
Pathogen-induced root glutamine concentration is a determinant of the outcome of the Medicago truncatula-Aphanomyces euteiches interaction.Planta. 2025 May 26;262(1):8. doi: 10.1007/s00425-025-04728-8. Planta. 2025. PMID: 40419777
-
Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism.Nat Rev Gastroenterol Hepatol. 2021 Oct;18(10):679-689. doi: 10.1038/s41575-021-00452-2. Epub 2021 May 17. Nat Rev Gastroenterol Hepatol. 2021. PMID: 34002082 Free PMC article. Review.
References
-
- Grifoni A., Weiskopf D., Ramirez S. I., Mateus J., Dan J. M., Moderbacher C. R., Rawlings S. A., Sutherland A., Premkumar L., Jadi R. S., Marrama D., de Silva A. M., Frazier A., Carlin A. F., Greenbaum J. A., Peters B., Krammer F., Smith D. M., Crotty S., Sette A., Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 181, 1489–1501.e15 (2020). - PMC - PubMed
-
- Krammer F., SARS-CoV-2 vaccines in development. Nature. 586, 516–527 (2020). - PubMed
-
- Suthar M. S., Zimmerman M. G., Kauffman R. C., Mantus G., Linderman S. L., Hudson W. H., Vanderheiden A., Nyhoff L., Davis C. W., Adekunle S., Affer M., Sherman M., Reynolds S., Verkerke H. P., Alter D. N., Guarner J., Bryksin J., Horwath M., Arthur C. M., Saakadze N., Smith G. H., Edupuganti S., Scherer E. M., Hellmeister K., Cheng A., Morales J. A., Neish A. S., Stowell S. R., Frank F., Ortlund E., Anderson E., Menachery V. D., Rouphael N., Mehta A., Stephens D. S., Ahmed R., Roback J. D., Wrammert J., Rapid generation of neutralizing antibody responses in COVID-19 patients. Cell Reports Medicine. 1, 100040 (2020). - PMC - PubMed
-
- Moderbacher C. R., Ramirez S. I., Dan J. M., Grifoni A., Hastie K. M., Weiskopf D., Belanger S., Abbott R. K., Kim C., Choi J., Kato Y., Crotty E. G., Kim C., Rawlings S. A., Mateus J., Tse L. P. V., Frazier A., Baric R., Peters B., Greenbaum J., Saphire E. O., Smith D. M., Sette A., Crotty S., Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 183, 996–1012.e19 (2020). - PMC - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous