Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 15;70(2):58-62.
doi: 10.15585/mmwr.mm7002e4.

Mitigation Policies and COVID-19-Associated Mortality - 37 European Countries, January 23-June 30, 2020

Affiliations

Mitigation Policies and COVID-19-Associated Mortality - 37 European Countries, January 23-June 30, 2020

James A Fuller et al. MMWR Morb Mortal Wkly Rep. .

Abstract

As cases and deaths from coronavirus disease 2019 (COVID-19) in Europe rose sharply in late March, most European countries implemented strict mitigation policies, including closure of nonessential businesses and mandatory stay-at-home orders. These policies were largely successful at curbing transmission of SARS-CoV-2, the virus that causes COVID-19 (1), but they came with social and economic costs, including increases in unemployment, interrupted education, social isolation, and related psychosocial outcomes (2,3). A better understanding of when and how these policies were effective is needed. Using data from 37 European countries, the impact of the timing of these mitigation policies on mortality from COVID-19 was evaluated. Linear regression was used to assess the association between policy stringency at an early time point and cumulative mortality per 100,000 persons on June 30. Implementation of policies earlier in the course of the outbreak was associated with lower COVID-19-associated mortality during the subsequent months. An increase by one standard deviation in policy stringency at an early timepoint was associated with 12.5 cumulative fewer deaths per 100,000 on June 30. Countries that implemented stringent policies earlier might have saved several thousand lives relative to those countries that implemented similar policies, but later. Earlier implementation of mitigation policies, even by just a few weeks, might be an important strategy to reduce the number of deaths from COVID-19.

PubMed Disclaimer

Conflict of interest statement

All authors have completed and submitted the International Committee of Medical Journal Editors form for disclosure of potential conflicts of interest. No potential conflicts of interest were disclosed.

Figures

FIGURE
FIGURE
Early policy stringency and cumulative mortality from COVID-19 — 37 European countries, January 23–June 30, 2020 Abbreviations: ALB = Albania; AUT = Austria; BEL = Belgium; BGR = Bulgaria; BIH = Bosnia and Herzegovina; BLR = Belarus; CHE = Switzerland; CI = confidence interval; COVID-19 = coronavirus disease 2019; CYP = Cyprus; CZE = Czechia; DEU = Germany; DNK = Denmark; ESP = Spain; EST = Estonia; FIN = Finland; FRA = France; GBR = United Kingdom; GRC = Greece; HRV = Croatia; HUN = Hungary; IRL = Ireland; ISL = Iceland; ITA = Italy; LTU = Lithuania; LUX = Luxembourg; LVA = Latvia; MDA = Moldova; NLD = Netherlands; NOR = Norway; POL = Poland; PRT = Portugal; ROU = Romania; SRB = Serbia; SVK = Slovakia; SVN = Slovenia; SWE = Sweden; TUR = Turkey; UKR = Ukraine. * Based on the Oxford Stringency Index (OSI) on the date the country reached the mortality threshold. The OSI is a composite index ranging from 0–100, based on the following nine mitigation policies: 1) cancellation of public events, 2) school closures, 3) gathering restrictions, 4) workplace closures, 5) border closures, 6) internal movement restrictions, 7) public transport closure, 8) stay-at-home recommendations, and 9) stay-at-home orders. The mortality threshold is the first date that each country reached a daily rate of 0.02 new COVID-19 deaths per 100,000 population, based on a 7-day moving average of the daily death rate. The color gradient represents the calendar date that each country reached the mortality threshold. Deaths per 100,000 population.

References

    1. Flaxman S, Mishra S, Gandy A, et al.; Imperial College COVID-19 Response Team. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 2020;584:257–61. 10.1038/s41586-020-2405-7 - DOI - PubMed
    1. Salari N, Hosseinian-Far A, Jalali R, et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Global Health 2020;16:57. 10.1186/s12992-020-00589-w - DOI - PMC - PubMed
    1. Kuhfeld M, Soland J, Tarasawa B, Johnson A, Ruzek E, Liu J. Projecting the potential impact of COVID-19 school closures on academic achievement. Educ Res 2020;49:549–65. 10.3102/0013189X20965918 - DOI
    1. World Health Organization. WHO coronavirus disease (COVID-19) dashboard. Geneva, Switzerland: World Health Organization; 2020. https://covid19.who.int/
    1. World Health Organization. Tracking public health and social measures: a global dataset. Geneva, Switzerland: World Health Organization; 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/phsm