Biosensors for rapid detection of Salmonella in food: A review
- PMID: 33443806
- DOI: 10.1111/1541-4337.12662
Biosensors for rapid detection of Salmonella in food: A review
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Keywords: Salmonella; biosensor; electrochemical; food; optical; piezoelectric.
© 2020 Institute of Food Technologists®.
Similar articles
-
Recent Advances in Electrochemical Biosensors for the Detection of Salmonellosis: Current Prospective and Challenges.Biosensors (Basel). 2022 May 26;12(6):365. doi: 10.3390/bios12060365. Biosensors (Basel). 2022. PMID: 35735514 Free PMC article. Review.
-
Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment.Biosens Bioelectron. 2018 Jan 15;99:667-682. doi: 10.1016/j.bios.2017.08.019. Epub 2017 Aug 10. Biosens Bioelectron. 2018. PMID: 28858763 Review.
-
Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection.Biosensors (Basel). 2021 Sep 18;11(9):346. doi: 10.3390/bios11090346. Biosensors (Basel). 2021. PMID: 34562936 Free PMC article. Review.
-
Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades.Compr Rev Food Sci Food Saf. 2020 Jul;19(4):1465-1487. doi: 10.1111/1541-4337.12576. Epub 2020 Jun 7. Compr Rev Food Sci Food Saf. 2020. PMID: 33337098 Review.
-
New analytical methods using carbon-based nanomaterials for detection of Salmonella species as a major food poisoning organism in water and soil resources.Chemosphere. 2022 Jan;287(Pt 3):132243. doi: 10.1016/j.chemosphere.2021.132243. Epub 2021 Sep 14. Chemosphere. 2022. PMID: 34537453 Review.
Cited by
-
Trends in Development of Aptamer-Based Biosensor Technology for Detection of Bacteria.Adv Biochem Eng Biotechnol. 2024;187:339-380. doi: 10.1007/10_2024_251. Adv Biochem Eng Biotechnol. 2024. PMID: 38409265 Review.
-
Regulation Mechanism of ssDNA Aptamer in Nanozymes and Application of Nanozyme-Based Aptasensors in Food Safety.Foods. 2022 Feb 14;11(4):544. doi: 10.3390/foods11040544. Foods. 2022. PMID: 35206017 Free PMC article. Review.
-
Active Quantum Biomaterials-Enhanced Microrobots for Food Safety.Small. 2024 Dec;20(52):e2404248. doi: 10.1002/smll.202404248. Epub 2024 Oct 24. Small. 2024. PMID: 39449211 Free PMC article.
-
Rapid Detection of Salmonella typhimurium in Drinking Water by a White Light Reflectance Spectroscopy Immunosensor.Sensors (Basel). 2021 Apr 10;21(8):2683. doi: 10.3390/s21082683. Sensors (Basel). 2021. PMID: 33920297 Free PMC article.
-
Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review.Biosensors (Basel). 2022 Dec 31;13(1):69. doi: 10.3390/bios13010069. Biosensors (Basel). 2022. PMID: 36671904 Free PMC article. Review.
References
REFERENCES
-
- Abeysundara, P. D. A., Dhowlaghar, N., Nannapaneni, R., Schilling, M. W., Mahmoud, B., Sharma, C. S., & Ma, D. P. (2018). Salmonella enterica growth and biofilm formation in flesh and peel cantaloupe extracts on four food-contact surfaces. International Journal of Food Microbiology, 280, 17-26. https://doi.org/10.1016/j.ijfoodmicro.2018.04.042
-
- Afonso, A. S., Pérez-López, B., Faria, R. C., Mattoso, L. H. C., Hernández-Herrero, M., Roig-Sagués, A. X., … Merkoçi, A. (2013). Electrochemical detection of Salmonella using gold nanoparticles. Biosensors and Bioelectronics, 40(1), 121-126. https://doi.org/10.1016/j.bios.2012.06.054
-
- Alamer, S., Eissa, S., Chinnappan, R., & Zourob, M. (2018). A rapid colorimetric immunoassay for the detection of pathogenic bacteria on poultry processing plants using cotton swabs and nanobeads. Microchimica Acta, 185(3), 164. https://doi.org/10.1007/s00604-018-2696-7
-
- Alexandre, D. L., Melo, A. M. A., Furtado, R. F., Borges, M. F., Figueiredo, E. A. T., Biswas, A., … Alves, C. R. (2018). A rapid and specific biosensor for Salmonella Typhimurium detection in milk. Food and Bioprocess Technology, 11(4), 748-756. https://doi.org/10.1007/s11947-017-2051-8
-
- Ansari, N., Yazdian-Robati, R., Shahdordizadeh, M., Wang, Z., & Ghazvini, K. (2017). Aptasensors for quantitative detection of Salmonella Typhimurium. Analytical Biochemistry, 533, 18-25. https://doi.org/10.1016/j.ab.2017.06.008
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources