Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 15;16(1):32.
doi: 10.1186/s13023-021-01688-6.

Exome sequencing in paediatric patients with movement disorders

Affiliations

Exome sequencing in paediatric patients with movement disorders

Anna Ka-Yee Kwong et al. Orphanet J Rare Dis. .

Abstract

Background: Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis.

Results: We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation.

Conclusions: A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.

Keywords: Genetic diagnosis; Movement disorders; Treatment; Whole exome sequencing.

PubMed Disclaimer

Conflict of interest statement

Anna Ka-Yee KWONG, Mandy Ho-Yin TSANG, Jasmine Lee-Fung FUNG, Christopher Chun-Yu Mak, Kate Lok-San Chan, Richard J.T. RODENBURG, Monkol LEK, Shushu HUANG, Sander PAJUSALU, Man-Mut YAU, Cheung TSOI, Sharon FUNG, Kam-Tim LIU, Che-Kwan MA, Sheila Wong, Eric Kin-Cheong YAU, Shuk-Mui TAI, Eva Lai-Wah FUNG, Nick Shun-Ping WU, Li-Yan TSUNG, Brian Hon-Yin CHUNG, Cheuk-Wing FUNG report no conflict of interest. Jan SMEITINK is the CEO of Khondrion, a pharmaceutical company developing compounds to potentially treat mitochondrial disease.

Figures

Fig. 1
Fig. 1
Graphical presentations of clinical and genetic outcome of patients
Fig. 2
Fig. 2
Brain Magnetic Resonance Imaging (MRI) of 2 patients with variants identified in SPG11. a Brain MRI of Patient 19 and 30 with periventricular white matter changes; b brain MRI of Patient 19 and 30 with thinning of corpus callosum. Arrows indicated the area with periventricular white matter changes and thinning of corpus callosum

Similar articles

Cited by

References

    1. Sanger TD, Chen D, Fehlings DL, Hallett M, Lang AE, Mink JW, et al. Definition and classification of hyperkinetic movements in childhood. Mov Disord. 2010;25(11):1538–1549. doi: 10.1002/mds.23088. - DOI - PMC - PubMed
    1. Garcia-Cazorla A, Duarte ST. Parkinsonism and inborn errors of metabolism. J Inherit Metab Dis. 2014;37(4):627–642. doi: 10.1007/s10545-014-9723-6. - DOI - PubMed
    1. Elert-Dobkowska E, Stepniak I, Krysa W, Ziora-Jakutowicz K, Rakowicz M, Sobanska A, et al. Next-generation sequencing study reveals the broader variant spectrum of hereditary spastic paraplegia and related phenotypes. Neurogenetics. 2019;20(1):27–38. doi: 10.1007/s10048-019-00565-6. - DOI - PMC - PubMed
    1. Nibbeling EA, Delnooz CC, de Koning TJ, Sinke RJ, Jinnah HA, Tijssen MA, et al. Using the shared genetics of dystonia and ataxia to unravel their pathogenesis. Neurosci Biobehav Rev. 2017;75:22–39. doi: 10.1016/j.neubiorev.2017.01.033. - DOI - PMC - PubMed
    1. Synofzik M, Schule R. Overcoming the divide between ataxias and spastic paraplegias: shared phenotypes, genes, and pathways. Mov Disord. 2017;32(3):332–345. doi: 10.1002/mds.26944. - DOI - PMC - PubMed

Publication types