Challenges and Strategies toward Cathode Materials for Rechargeable Potassium-Ion Batteries
- PMID: 33448099
- DOI: 10.1002/adma.202004689
Challenges and Strategies toward Cathode Materials for Rechargeable Potassium-Ion Batteries
Abstract
With increasing demand for grid-scale energy storage, potassium-ion batteries (PIBs) have emerged as promising complements or alternatives to commercial lithium-ion batteries owing to the low cost, natural abundance of potassium resources, the low standard reduction potential of potassium, and fascinating K+ transport kinetics in the electrolyte. However, the low energy density and unstable cycle life of cathode materials hamper their practical application. Therefore, cathode materials with high capacities, high redox potentials, and good structural stability are required with the advancement toward next-generation PIBs. To this end, understanding the structure-dependent intercalation electrochemistry and recognizing the existing issues relating to cathode materials are indispensable prerequisites. This review summarizes the recent advances of PIB cathode materials, including metal hexacyanometalates, layered metal oxides, polyanionic frameworks, and organic compounds, with an emphasis on the structural advantages of the K+ intercalation reaction. Moreover, major current challenges with corresponding strategies for each category of cathode materials are highlighted. Finally, future research directions and perspectives are presented to accelerate the development of PIBs and facilitate commercial applications. It is believed that this review will provide practical guidance for researchers engaged in developing next-generation advanced PIB cathode materials.
Keywords: cathode materials; charge storage mechanisms; intercalation electrochemistry; potassium-ion batteries; potassium-ion storage.
© 2021 Wiley-VCH GmbH.
Similar articles
-
Post-Lithium-Ion Battery Era: Recent Advances in Rechargeable Potassium-Ion Batteries.Chemistry. 2021 Jan 7;27(2):512-536. doi: 10.1002/chem.202001811. Epub 2020 Nov 5. Chemistry. 2021. PMID: 32510710 Review.
-
High-Performance Cathode Materials for Potassium-Ion Batteries: Structural Design and Electrochemical Properties.Adv Mater. 2021 Sep;33(36):e2100409. doi: 10.1002/adma.202100409. Epub 2021 Jul 16. Adv Mater. 2021. PMID: 34270806 Review.
-
Birnessite Nanosheet Arrays with High K Content as a High-Capacity and Ultrastable Cathode for K-Ion Batteries.Adv Mater. 2019 Jun;31(24):e1900060. doi: 10.1002/adma.201900060. Epub 2019 May 2. Adv Mater. 2019. PMID: 31045288
-
Advances in the Cathode Materials for Lithium Rechargeable Batteries.Angew Chem Int Ed Engl. 2020 Feb 10;59(7):2578-2605. doi: 10.1002/anie.201902359. Epub 2019 Nov 8. Angew Chem Int Ed Engl. 2020. PMID: 31034134 Review.
-
Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries.Adv Sci (Weinh). 2022 Jun;9(18):e2105882. doi: 10.1002/advs.202105882. Epub 2022 Apr 27. Adv Sci (Weinh). 2022. PMID: 35478355 Free PMC article. Review.
Cited by
-
Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries.Natl Sci Rev. 2022 Sep 1;9(11):nwac183. doi: 10.1093/nsr/nwac183. eCollection 2022 Nov. Natl Sci Rev. 2022. PMID: 36381218 Free PMC article.
-
Ab Initio Study of the Electronic Properties of a Silicene Anode Subjected to Transmutation Doping.Int J Mol Sci. 2023 Feb 2;24(3):2864. doi: 10.3390/ijms24032864. Int J Mol Sci. 2023. PMID: 36769185 Free PMC article.
-
Alkali and alkaline-earth metal ion-solvent co-intercalation reactions in nonaqueous rechargeable batteries.Chem Sci. 2021 Nov 12;12(46):15206-15218. doi: 10.1039/d1sc04202e. eCollection 2021 Dec 1. Chem Sci. 2021. PMID: 34976341 Free PMC article. Review.
-
A Review of Macrocycles Applied in Electrochemical Energy Storge and Conversion.Molecules. 2024 May 27;29(11):2522. doi: 10.3390/molecules29112522. Molecules. 2024. PMID: 38893398 Free PMC article. Review.
-
Bimetallic Pd-Co Aerogel Three-Dimensional Architecture: Developing Self-Assembled Materials for Advanced Ethanol Oxidation.ACS Omega. 2023 Nov 22;8(48):45245-45254. doi: 10.1021/acsomega.3c02493. eCollection 2023 Dec 5. ACS Omega. 2023. PMID: 38075760 Free PMC article.
References
-
- G. L. Smith, J. E. Eyley, X. Han, X. Zhang, J. Li, N. M. Jacques, H. G. Godfrey, S. P. Argent, L. J. M. McPherson, S. J. Teat, Nat. Mater. 2019, 18, 1358.
-
- X. Mu, H. Pan, P. He, H. Zhou, Adv. Mater. 2020, 32, 1903790.
-
- X. Xu, J. Liu, J. Liu, L. Ouyang, R. Hu, H. Wang, L. Yang, M. Zhu, Adv. Funct. Mater. 2018, 28, 1707573.
-
- X. Xu, J. Liu, Z. Liu, J. Shen, R. Hu, J. Liu, L. Ouyang, L. Zhang, M. Zhu, ACS Nano 2017, 11, 9033.
-
- J. Lee, D. A. Kitchaev, D.-H. Kwon, C.-W. Lee, J. K. Papp, Y.-S. Liu, Z. Lun, R. J. Clément, T. Shi, B. D. McCloskey, Nature 2018, 556, 185.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources