Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb;17(5):e2005743.
doi: 10.1002/smll.202005743. Epub 2021 Jan 15.

3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure

Affiliations

3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure

Nicholas A Sather et al. Small. 2021 Feb.

Abstract

Liquid crystalline hydrogels are an attractive class of soft materials to direct charge transport, mechanical actuation, and cell migration. When such systems contain supramolecular polymers, it is possible in principle to easily shear align nanoscale structures and create bulk anisotropic properties. However, reproducibly fabricating and patterning aligned supramolecular domains in 3D hydrogels remains a challenge using conventional fabrication techniques. Here, a method is reported for 3D printing of ionically crosslinked liquid crystalline hydrogels from aqueous supramolecular polymer inks. Using a combination of experimental techniques and molecular dynamics simulations, it is found that pH and salt concentration govern intermolecular interactions among the self-assembled structures where lower charge densities on the supramolecular polymers and higher charge screening from the electrolyte result in higher viscosity inks. Enhanced hierarchical interactions among assemblies in high viscosity inks increase the printability and ultimately lead to greater nanoscale alignment in extruded macroscopic filaments when using small nozzle diameters and fast print speeds. The use of this approach is demonstrated to create materials with anisotropic ionic and electronic charge transport as well as scaffolds that trigger the macroscopic alignment of cells due to the synergy of supramolecular self-assembly and additive manufacturing.

Keywords: 3D printing; hierarchical structures; hydrogels; liquid crystals; self-assembly.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Z. Zhao, R. Fang, Q. Rong, M. Liu, Adv. Mater. 2017, 29, 1703045.
    1. S. Zhang, C. I. Pelligra, X. Feng, C. O. Osuji, Adv. Mater. 2018, 30, 1705794.
    1. J. D. Hartgerink, E. Beniash, S. I. Stupp, Science 2001, 294, 1684.
    1. J. D. Hartgerink, E. Beniash, S. I. Stupp, Proc. Natl. Acad. Sci. USA 2002, 99, 5133.
    1. J. Boekhoven, S. I. Stupp, Adv. Mater. 2014, 26, 1642.

Publication types

LinkOut - more resources