Artificial intelligence in upper GI endoscopy - current status, challenges and future promise
- PMID: 33448515
- DOI: 10.1111/jgh.15354
Artificial intelligence in upper GI endoscopy - current status, challenges and future promise
Abstract
White-light endoscopy with biopsy is the current gold standard modality for detecting and diagnosing upper gastrointestinal (GI) pathology. However, missed lesions remain a challenge. To overcome interobserver variability and learning curve issues, artificial intelligence (AI) has recently been introduced to assist endoscopists in the detection and diagnosis of upper GI neoplasia. In contrast to AI in colonoscopy, current AI studies for upper GI endoscopy are smaller pilot studies. Researchers currently lack large volume, well-annotated, high-quality datasets in gastric cancer, dysplasia in Barrett's esophagus and early esophageal squamous cell cancer. This review will look at the latest studies of AI in upper GI endoscopy, discuss some of the challenges facing researchers, and predict what the future may hold in this rapidly changing field.
Keywords: Endoscopy; Esophagus; Stomach; Upper GI.
© 2020 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Similar articles
-
Artificial Intelligence in Upper Gastrointestinal Endoscopy.Dig Dis. 2022;40(4):395-408. doi: 10.1159/000518232. Epub 2021 Jul 21. Dig Dis. 2022. PMID: 34348267 Review.
-
Endoscopy for upper GI cancer screening in the general population: a cost-utility analysis.Gastrointest Endosc. 2011 Sep;74(3):610-624.e2. doi: 10.1016/j.gie.2011.05.001. Epub 2011 Jul 13. Gastrointest Endosc. 2011. PMID: 21741639
-
Diagnosis of esophagogastric tumors.Endoscopy. 2004 Feb;36(2):110-9. doi: 10.1055/s-2004-814178. Endoscopy. 2004. PMID: 14765308 Review.
-
Evaluation of the updated confocal laser endomicroscopy criteria for Barrett's esophagus among gastrointestinal pathologists.Dis Esophagus. 2014 Sep-Oct;27(7):623-9. doi: 10.1111/dote.12121. Epub 2013 Sep 5. Dis Esophagus. 2014. PMID: 24006939
-
Artificial Intelligence and Deep Learning for Upper Gastrointestinal Neoplasia.Gastroenterology. 2022 Apr;162(4):1056-1066. doi: 10.1053/j.gastro.2021.11.040. Epub 2021 Dec 11. Gastroenterology. 2022. PMID: 34902362 Review.
Cited by
-
Revolutionizing healthcare by use of artificial intelligence in esophageal carcinoma - a narrative review.Ann Med Surg (Lond). 2023 Aug 15;85(10):4920-4927. doi: 10.1097/MS9.0000000000001175. eCollection 2023 Oct. Ann Med Surg (Lond). 2023. PMID: 37811030 Free PMC article. Review.
-
Challenges in early detection and endoscopic resection of esophageal cancer: There is a long way to go.World J Gastrointest Oncol. 2024 Jul 15;16(7):3364-3367. doi: 10.4251/wjgo.v16.i7.3364. World J Gastrointest Oncol. 2024. PMID: 39072158 Free PMC article.
-
Comparative study of convolutional neural network architectures for gastrointestinal lesions classification.PeerJ. 2023 Mar 16;11:e14806. doi: 10.7717/peerj.14806. eCollection 2023. PeerJ. 2023. PMID: 36945355 Free PMC article.
-
Comparing Raman Spectroscopy-Based Artificial Intelligence to High-Definition White Light Endoscopy for Endoscopic Diagnosis of Gastric Neoplasia: A Feasibility Proof-of-Concept Study.Diagnostics (Basel). 2024 Dec 17;14(24):2839. doi: 10.3390/diagnostics14242839. Diagnostics (Basel). 2024. PMID: 39767199 Free PMC article.
-
An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer.Cancers (Basel). 2022 Dec 5;14(23):6000. doi: 10.3390/cancers14236000. Cancers (Basel). 2022. PMID: 36497481 Free PMC article.
References
-
- Rodríguez de Santiago E, Hernanz N, Marcos-Prieto HM et al. Rate of missed oesophageal cancer at routine endoscopy and survival outcomes: a multicentric cohort study. United European Gastroenterol J 2019; 7: 189-198.
-
- Voutilainen ME, Juhola MT. Evaluation of the diagnostic accuracy of gastroscopy to detect gastric tumours: clinicopathological features and prognosis of patients with gastric cancer missed on endoscopy. Eur J Gastroenterol Hepatol 2005; 17: 1345-1349.
-
- Amin A, Gilmour H, Graham L, Paterson-Brown S, Terrace J, Crofts TJ. Gastric adenocarcinoma missed at endoscopy. J R Coll Surg Edinb 2002; 47: 681-684.
-
- Miyaki R, Yoshida S, Tanaka S et al. A computer system to be used with laser-based endoscopy for quantitative diagnosis of early gastric cancer. J Clin Gastroenterol 2015; 49: 108-115.
-
- Kanesaka T, Lee TC, Uedo N et al. Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging. Gastrointest Endosc 2018; 87: 1339-1344.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical