Bending Setups for Reliability Investigation of Flexible Electronics
- PMID: 33451151
- PMCID: PMC7828635
- DOI: 10.3390/mi12010078
Bending Setups for Reliability Investigation of Flexible Electronics
Abstract
Flexible electronics is a rapidly growing technology for a multitude of applications. Wearables and flexible displays are some application examples. Various technologies and processes are used to produce flexible electronics. An important aspect to be considered when developing these systems is their reliability, especially with regard to repeated bending. In this paper, the frequently used methods for investigating the bending reliability of flexible electronics are presented. This is done to provide an overview of the types of tests that can be performed to investigate the bending reliability. Furthermore, it is shown which devices are developed and optimized to gain more knowledge about the behavior of flexible systems under bending. Both static and dynamic bending test methods are presented.
Keywords: bending; bending apparatus; bending reliability; dynamic bending; flexible electronics; four-point bending; mechanical characterization; push to flex; roll to flex; static bending; three-point bending.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



















Similar articles
-
Universal Testing Apparatus Implementing Various Repetitive Mechanical Deformations to Evaluate the Reliability of Flexible Electronic Devices.Micromachines (Basel). 2018 Sep 25;9(10):492. doi: 10.3390/mi9100492. Micromachines (Basel). 2018. PMID: 30424425 Free PMC article.
-
Assembly of Surface-Mounted Devices on Flexible Substrates by Isotropic Conductive Adhesive and Solder and Lifetime Characterization.Micromachines (Basel). 2022 Aug 1;13(8):1240. doi: 10.3390/mi13081240. Micromachines (Basel). 2022. PMID: 36014161 Free PMC article.
-
Electrical Reliability and Bending Test Methodologies of Metal Electrode on Flexible Substrate.J Nanosci Nanotechnol. 2020 Jan 1;20(1):470-477. doi: 10.1166/jnn.2020.17226. J Nanosci Nanotechnol. 2020. PMID: 31383195
-
A Review of the Progress of Thin-Film Transistors and Their Technologies for Flexible Electronics.Micromachines (Basel). 2021 Jun 2;12(6):655. doi: 10.3390/mi12060655. Micromachines (Basel). 2021. PMID: 34199683 Free PMC article. Review.
-
Novel Nano-Materials and Nano-Fabrication Techniques for Flexible Electronic Systems.Micromachines (Basel). 2018 May 28;9(6):263. doi: 10.3390/mi9060263. Micromachines (Basel). 2018. PMID: 30424196 Free PMC article. Review.
Cited by
-
Weld Strength of Friction Welding of Dissimilar Polymer Rods Fabricated by Fused Deposition Modeling.Polymers (Basel). 2022 Jun 25;14(13):2582. doi: 10.3390/polym14132582. Polymers (Basel). 2022. PMID: 35808626 Free PMC article.
-
Effects of Rotational Speed on Joint Characteristics of Green Joining Technique of Dissimilar Polymeric Rods Fabricated by Additive Manufacturing Technology.Polymers (Basel). 2022 Nov 9;14(22):4822. doi: 10.3390/polym14224822. Polymers (Basel). 2022. PMID: 36432948 Free PMC article.
-
Influence of Aging on the Flexural Strength of PLA and PLA-X 3D-Printed Materials.Micromachines (Basel). 2024 Mar 14;15(3):395. doi: 10.3390/mi15030395. Micromachines (Basel). 2024. PMID: 38542642 Free PMC article.
-
Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems.Nanomicro Lett. 2025 Jan 15;17(1):109. doi: 10.1007/s40820-024-01597-w. Nanomicro Lett. 2025. PMID: 39812886 Free PMC article. Review.
-
Laser writing of metal-oxide doped graphene films for tunable sensor applications.Nanoscale Adv. 2024 Dec 10;7(3):766-783. doi: 10.1039/d4na00463a. eCollection 2025 Jan 28. Nanoscale Adv. 2024. PMID: 39669520 Free PMC article.
References
-
- Bedjaoui M., Martin S., Salot R. Interconnection of Flexible Lithium Thin Film Batteries for Systems-in-Foil; Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC); Las Vegas, NV, USA. 31 May–3 June 2016; pp. 2082–2088.
-
- Logothetidis S. Handbook of Flexible Organic Electronics. Woodhead Puplishing, Elsevier; Amesterdam, The Netherlands: 2015.
-
- Gupta S., Navaraj W.T., Lorenzelli L., Dahiya R. Ultra-thin chips for high-performance flexible electronics. NPJ Flex. Electron. 2018;2:8. doi: 10.1038/s41528-018-0021-5. - DOI
-
- Nathan B.A., Ieee F., Ahnood A., Cole M.T., Lee S., Ieee M., Suzuki Y., Hiralal P., Bonaccorso F., Hasan T., et al. Flexible Electronics: The Next Ubiquitous Platform. Proc. IEEE. 2012;100:1486–1517. doi: 10.1109/JPROC.2012.2190168. - DOI
-
- Tong G., Jia Z., Chang J. Flexible Hybrid Electronics: Review and Challenges. Proc. IEEE Int. Symp. Circuits Syst. 2018;2018:1–5.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources