Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar:169:109279.
doi: 10.1016/j.apradiso.2020.109279. Epub 2020 Jul 6.

Neutron dosimetry and shielding verification in commissioning of Compact Proton Therapy Centers (CPTC) using MCNP6.2 Monte Carlo code

Affiliations

Neutron dosimetry and shielding verification in commissioning of Compact Proton Therapy Centers (CPTC) using MCNP6.2 Monte Carlo code

Gonzalo F Garcia-Fernandez et al. Appl Radiat Isot. 2021 Mar.

Abstract

Proton therapy (PT) is an external radiotherapy using proton beams with energies between 70 and 230 MeV to treat some type of tumours with outstanding benefits, due to its energy transfer plot. There is a growing demand of facilities taking up small spaces and Compact Proton Therapy Centers (CPTC), with one or two treatment rooms, supposing the technical response of manufacturers to this request. A large amount of stray radiation is produced in the interaction of protons used in therapy, neutrons mainly, hence, optimal design of shielding and verifications must be carried out in commissioning stages. Currently, almost 50 CPTC are under construction and start up in many countries, including several in Spain. In the present work, the effectiveness of shielding in a CPTC was verified with the Monte Carlo code MCNP6 by calculating the ambient dose equivalent, H*(10) due to secondary neutrons, outside the enclosures and walls of the center. The facility modelled was similar to one planned to start operating in 2019 in Spain, a CPTC, made up of a superconducting synchrocyclotron and one treatment room, with a configuration standard, shielding and width of barriers based on dimensions proposed a priori by the vendor. Therefore, the paper is focused in check the suitability of the materials and thickness of the walls of the center and develop the assessment of enclosures. Several models of the radiation sources and type of concrete in walls were simulated, starting from a conservative assumptions, followed by more realistic models. In all cases, the results were below 1 mSv/year, which is the international legal limit considered for the general public. This work is part of the project Contributions to Shielding and Dosimetry of Neutrons in Compact Proton Therapy Centers (CPTC).

Keywords: Ambient dose equivalent; Compact proton therapy centers; MCNP6.2; Operational radiation protection; Shielding commissioning.

PubMed Disclaimer

Similar articles

LinkOut - more resources