Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar;40(9):1595-1608.
doi: 10.1038/s41388-020-01634-z. Epub 2021 Jan 15.

KNSTRN promotes tumorigenesis and gemcitabine resistance by activating AKT in bladder cancer

Affiliations

KNSTRN promotes tumorigenesis and gemcitabine resistance by activating AKT in bladder cancer

Yaoyi Xiong et al. Oncogene. 2021 Mar.

Abstract

KNSTRN is a component of the mitotic spindle, which was rarely investigated in tumorigenesis. AKT plays an essential role in tumorigenesis by modulating the phosphorylation of various substrates. The activation of AKT is regulated by PTEN and PIP3. Here, we prove KNSTRN is positively correlated with malignancy of bladder cancer and KNSTRN activates AKT phosphorylation at Thr308 and Ser473. More importantly, our study reveals that both KNSTRN and PTEN interact with PH domain of AKT at cell membrane. The amount of KNSTRN interacted with AKT is negatively related to PTEN. Furthermore, PIP3 pull-down assay proves that KNSTRN promoted AKT movement to PIP3. These data suggest KNSTRN may activate AKT phosphorylation by promoting AKT movement to PIP3 and alleviating PTEN suppression. Based on the activation of AKT phosphorylation, our study demonstrates that KNSTRN promotes bladder cancer metastasis and gemcitabine resistance in vitro and in vivo. Meanwhile, the effect of KNSTRN on tumorigenesis and gemcitabine resistance could be restored by AKT specific inhibitor MK2206 or AKT overexpression. In conclusion, we identify an oncogene KNSTRN that promotes tumorigenesis and gemcitabine resistance by activating AKT phosphorylation and may serve as a therapeutic target in bladder cancer.

PubMed Disclaimer

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34. - PubMed - DOI
    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. - DOI
    1. Choo Z, Koh RY, Wallis K, Koh TJ, Kuick CH, Sobrado V, et al. XAF1 promotes neuroblastoma tumor suppression and is required for KIF1Bbeta-mediated apoptosis. Oncotarget. 2016;7:34229–39. - DOI
    1. Cao D, Qi Z, Pang Y, Li H, Xie H, Wu J, et al. Retinoic Acid-Related Orphan Receptor C Regulates Proliferation, Glycolysis, and Chemoresistance via the PD-L1/ITGB6/STAT3 Signaling Axis in Bladder Cancer. Cancer Res. 2019;79:2604–18. - DOI
    1. Miyamoto DT, Mouw KW, Feng FY, Shipley WU, Efstathiou JA. Molecular biomarkers in bladder preservation therapy for muscle-invasive bladder cancer. Lancet Oncol. 2018;19:e683–95. - DOI

Publication types

MeSH terms

LinkOut - more resources