Analysis of the factors that influence the C=N stretching frequency of polyene Schiff bases. Implications for bacteriorhodopsin and rhodopsin
- PMID: 3345334
- PMCID: PMC1330146
- DOI: 10.1016/S0006-3495(88)83087-X
Analysis of the factors that influence the C=N stretching frequency of polyene Schiff bases. Implications for bacteriorhodopsin and rhodopsin
Abstract
In this study quantum mechanical calculations of force constants and normal mode analysis are used to elucidate the factors that influence the C=C and C=N stretching frequencies in polyenes and in protonated Schiff bases. The C=N stretching frequency is found to depend on both the C=N stretching force constant and the C=N-H bending force constant. Due to the contributions of these two modes, the C=N stretching frequency is particularly sensitive to the magnitude of the Schiff base counterion interactions and to the hydrogen bonding environment of the Schiff base nitrogen. Models for chromophore-protein interactions in the retinal binding site and for the photochemical transformations of bacteriorhodopsin and rhodopsin are evaluated in light of these results.
Similar articles
-
Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.Biophys J. 1994 Apr;66(4):1129-36. doi: 10.1016/S0006-3495(94)80893-8. Biophys J. 1994. PMID: 8038384 Free PMC article.
-
Structure of the retinal chromophore in sensory rhodopsin I from resonance Raman spectroscopy.J Biol Chem. 1989 Nov 5;264(31):18280-3. J Biol Chem. 1989. PMID: 2808377
-
Factors affecting the C = N stretching in protonated retinal Schiff base: a model study for bacteriorhodopsin and visual pigments.Biochemistry. 1987 Jun 2;26(11):3210-7. doi: 10.1021/bi00385a041. Biochemistry. 1987. PMID: 3607019
-
Interpretation of resonance Raman spectra of biological molecules.Annu Rev Biophys Bioeng. 1977;6:273-300. doi: 10.1146/annurev.bb.06.060177.001421. Annu Rev Biophys Bioeng. 1977. PMID: 326148 Review. No abstract available.
-
Resonance Raman studies of visual pigments.Annu Rev Biophys Bioeng. 1977;6:33-55. doi: 10.1146/annurev.bb.06.060177.000341. Annu Rev Biophys Bioeng. 1977. PMID: 326149 Review. No abstract available.
Cited by
-
Effects of various anions on the Raman spectrum of halorhodopsin.Biophys J. 1989 Mar;55(3):425-31. doi: 10.1016/S0006-3495(89)82836-X. Biophys J. 1989. PMID: 2930828 Free PMC article.
-
Bathorhodopsin structure in the room-temperature rhodopsin photosequence: picosecond time-resolved coherent anti-Stokes Raman scattering.Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):372-6. doi: 10.1073/pnas.93.1.372. Proc Natl Acad Sci U S A. 1996. PMID: 8552641 Free PMC article.
-
Glu1022.53-Mediated Early Conformational Changes in the Process of Light-Induced Green Cone Pigment Activation.Biochemistry. 2024 Apr 2;63(7):843-854. doi: 10.1021/acs.biochem.3c00594. Epub 2024 Mar 8. Biochemistry. 2024. PMID: 38458614 Free PMC article.
-
Factors affecting the absorption maxima of acidic forms of bacteriorhodopsin. A study with artificial pigments.Biophys J. 1989 Dec;56(6):1259-65. doi: 10.1016/S0006-3495(89)82773-0. Biophys J. 1989. PMID: 2611336 Free PMC article.
-
Synthetic retinals as probes for the binding site and photoreactions in rhodopsins.J Membr Biol. 1989 Dec;112(3):193-212. doi: 10.1007/BF01870951. J Membr Biol. 1989. PMID: 2693733 Review. No abstract available.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources