Reversible photocontrol of DNA coacervation
- PMID: 33453931
- DOI: 10.1016/bs.mie.2020.06.013
Reversible photocontrol of DNA coacervation
Abstract
Coacervate micro-droplets produced by liquid-liquid phase separation are increasingly used to emulate the dynamical organization of membraneless organelles found in living cells. Designing synthetic coacervates able to be formed and disassembled with improved spatiotemporal control is still challenging. In this chapter, we describe the design of photoswitchable coacervate droplets produced by phase separation of short double stranded DNA in the presence of an azobenzene cation. The droplets can be reversibly dissolved with light, which provides a new approach for the spatiotemporal regulation of coacervation. Significantly, the dynamics of light-actuated droplet formation and dissolution correlates with the capture and release of guest solutes. The reported system can find applications for the dynamic photocontrol of biomolecule compartmentalization, paving the way to the light-activated regulation of signaling pathways in artificial membraneless organelles.
Keywords: Artificial membraneless organelles; Azobenzene; DNA; Dynamic protocells; Liquid-liquid phase separation; Photoswitchable coacervates.
© 2021 Elsevier Inc. All rights reserved.
Similar articles
-
Self-programmed enzyme phase separation and multiphase coacervate droplet organization.Chem Sci. 2021 Jan 25;12(8):2794-2802. doi: 10.1039/d0sc06418a. Chem Sci. 2021. PMID: 34164043 Free PMC article.
-
Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets.Angew Chem Int Ed Engl. 2019 Oct 7;58(41):14594-14598. doi: 10.1002/anie.201909228. Epub 2019 Sep 5. Angew Chem Int Ed Engl. 2019. PMID: 31408263
-
Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition.ACS Appl Mater Interfaces. 2018 Sep 26;10(38):32782-32791. doi: 10.1021/acsami.8b07573. Epub 2018 Sep 14. ACS Appl Mater Interfaces. 2018. PMID: 30179001 Free PMC article.
-
Coacervate Droplets for Synthetic Cells.Small Methods. 2023 Dec;7(12):e2300496. doi: 10.1002/smtd.202300496. Epub 2023 Jul 18. Small Methods. 2023. PMID: 37462244 Review.
-
Peptide-based coacervates as biomimetic protocells.Chem Soc Rev. 2021 Mar 21;50(6):3690-3705. doi: 10.1039/d0cs00307g. Epub 2021 Feb 22. Chem Soc Rev. 2021. PMID: 33616129 Review.
Cited by
-
Light responsive nucleic acid for biomedical application.Exploration (Beijing). 2022 Apr 6;2(5):20210099. doi: 10.1002/EXP.20210099. eCollection 2022 Oct. Exploration (Beijing). 2022. PMID: 37325506 Free PMC article. Review.
-
Self-programmed enzyme phase separation and multiphase coacervate droplet organization.Chem Sci. 2021 Jan 25;12(8):2794-2802. doi: 10.1039/d0sc06418a. Chem Sci. 2021. PMID: 34164043 Free PMC article.
-
Chemical Communication in Artificial Cells: Basic Concepts, Design and Challenges.Front Mol Biosci. 2022 May 26;9:880525. doi: 10.3389/fmolb.2022.880525. eCollection 2022. Front Mol Biosci. 2022. PMID: 35720123 Free PMC article. Review.
-
Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling.Nat Commun. 2023 May 9;14(1):2606. doi: 10.1038/s41467-023-38163-8. Nat Commun. 2023. PMID: 37160869 Free PMC article.
-
Light-Responsive Mononucleotide Coacervates.Chemistry. 2025 Jun 3;31(31):e202501109. doi: 10.1002/chem.202501109. Epub 2025 Apr 27. Chemistry. 2025. PMID: 40244931 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources