Simulated twin-phase pancreatic CT generated using single portal venous phase dual-energy CT acquisition in pancreatic ductal adenocarcinoma
- PMID: 33454806
- DOI: 10.1007/s00261-020-02921-9
Simulated twin-phase pancreatic CT generated using single portal venous phase dual-energy CT acquisition in pancreatic ductal adenocarcinoma
Abstract
Purpose: To evaluate the diagnostic performance of a simulated twin-phase pancreatic protocol CT generated from a single portal venous phase (PVP) dual-energy CT (DECT) acquisition in patients with pancreatic ductal adenocarcinoma (PDAC).
Methods: In this retrospective study, we included 63 patients with PDAC who underwent pancreatic protocol (pancreatic phase [PP] and PVP) DECT. Two data sets were created from this original acquisition-(1) Standard protocol (50 keV PP/65 keV PVP) and (2) Simulated protocol (40 keV/65 keV PVP). Using a 5-point scale, three readers scored image quality, tumor conspicuity, and arterial involvement by the PDAC. Signal-to-noise ratio (SNR) of the pancreas and tumor-to-pancreas contrast-to-noise ratio (CNR) were calculated. Qualitative scores, quantitative parameters, and radiation dose were compared between standard and simulated protocols.
Results: No significant difference in detection rate of PDAC was seen between the standard (58/63, 92.1%) and simulated protocols (56/63, 88.9%) (P = 0.76). Subjective scoring for arterial involvement for celiac (P = 0.86), superior mesenteric (P = 0.88), splenic (P = 0.86), common hepatic (P = 0.52), gastroduodenal (P = 0.95), first jejunal (P = 0.48) arteries, and aorta (P = 1.00) were comparable between two protocols. The image quality (P = 0.14), the SNR of the pancreas (P = 0.15), and CNR (P = 0.54) were comparable between two protocols. The projected mean dose-length product (DLP) (629.6 ± 148.3 mGy cm) in the simulated protocol showed a 44% reduction in radiation dose compared to the standard protocol (mean DLP, 1123.3 ± 268.9 mGy cm) (P < 0.0001).
Conclusions: Low keV images generated from a PVP DECT acquisition allows creation of a twin-phase pancreatic protocol CT with comparable diagnostic accuracy for detecting PDAC with significant reduction in radiation dose. Reduced radiation dose is desirable in surveillance and screening for pancreatic diseases.
Keywords: Multidetector computed tomography; Pancreatic cancer; Radiation dosage.
References
-
- Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74:2913-2921 - DOI
-
- Klauss M, Schobinger M, Wolf I, et al. Value of three-dimensional reconstructions in pancreatic carcinoma using multidetector CT: initial results. World J Gastroenterol 2009; 15:5827-5832 - DOI
-
- NCCN clinical practice guidelines in oncology: pancreatic adenocarcinoma, version 3. 2019. https://www.nccnorg/professionals/physiciangls/pdf/pancreaticpdf ;
-
- Kulkarni NM, Soloff EV, Tolat PP, et al. White paper on pancreatic ductal adenocarcinoma from society of abdominal radiology's disease-focused panel for pancreatic ductal adenocarcinoma: Part I, AJCC staging system, NCCN guidelines, and borderline resectable disease. Abdom Radiol (NY) 2020; 45:716-728 - DOI
-
- Kulkarni NM, Hough DM, Tolat PP, Soloff EV, Kambadakone AR. Pancreatic adenocarcinoma: cross-sectional imaging techniques. Abdom Radiol (NY) 2018; 43:253-263 - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
