Prey type constrains growth and photosynthetic capacity of the kleptoplastidic ciliate Mesodinium chamaeleon (Ciliophora)
- PMID: 33454988
- DOI: 10.1111/jpy.13131
Prey type constrains growth and photosynthetic capacity of the kleptoplastidic ciliate Mesodinium chamaeleon (Ciliophora)
Abstract
Kleptoplastidic, or chloroplast-stealing, lineages offer insight into the process of acquiring photosynthesis. By quantifying the ability of these organisms to retain and use photosynthetic machinery from their prey, we can understand how intermediaries on the endosymbiosis pathway might have evolved regulatory and maintenance mechanisms. Here, we focus on a mixotrophic kleptoplastidic ciliate, Mesodinium chamaeleon, noteworthy for its ability to retain functional chloroplasts from at least half a dozen cryptophyte algal genera. We contrasted the performance of kleptoplastids from blue-green and red cryptophyte prey as a function of light level and feeding history. Our experiments showed that starved M. chamaeleon cells are able to maintain photosynthetic function for at least 2 weeks and that M. chamaeleon containing red plastids lost chlorophyll and electron transport capacity faster than those containing blue-green plastids. However, likely due to increased pigment content and photosynthetic rates in red plastids, M. chamaeleon had higher growth rates and more prolonged growth when feeding on red cryptophytes. For example, M. chamaeleon grew rapidly and extensively when fed the blue-green cryptophyte Chroomonas mesostigmatica, but this growth appeared to hinge on high levels of feeding supporting photosynthetic activity. In contrast, even starved M. chamaeleon containing red plastids from Rhodomonas salina could achieve high photosynthetic rates and extensive growth. Our findings show that plastid origin impacts the maintenance and magnitude of photosynthetic activity, though whether this is due to variation in ciliate control or gradual loss of plastid function in ingested prey cells remains unknown.
Keywords: Mesodiniidae; acquired phototrophy; cryptophyte algae; kleptoplasty; mixotrophy.
© 2021 Phycological Society of America.
Similar articles
-
Retention of blue-green cryptophyte organelles by Mesodinium rubrum and their effects on photophysiology and growth.J Eukaryot Microbiol. 2025 Mar-Apr;72(2):e13066. doi: 10.1111/jeu.13066. Epub 2024 Nov 25. J Eukaryot Microbiol. 2025. PMID: 39584600 Free PMC article.
-
Cascading effects of prey identity on gene expression in a kleptoplastidic ciliate.J Eukaryot Microbiol. 2023 Jan;70(1):e12940. doi: 10.1111/jeu.12940. Epub 2022 Sep 1. J Eukaryot Microbiol. 2023. PMID: 35975609 Free PMC article.
-
Preferential Plastid Retention by the Acquired Phototroph Mesodinium chamaeleon.J Eukaryot Microbiol. 2018 Mar;65(2):148-158. doi: 10.1111/jeu.12446. Epub 2017 Aug 7. J Eukaryot Microbiol. 2018. PMID: 28710891
-
Acquired phototrophy in ciliates: a review of cellular interactions and structural adaptations.J Eukaryot Microbiol. 2011 May-Jun;58(3):185-95. doi: 10.1111/j.1550-7408.2011.00545.x. Epub 2011 Apr 21. J Eukaryot Microbiol. 2011. PMID: 21518077 Review.
-
On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability - review.Folia Microbiol (Praha). 2009;54(4):303-21. doi: 10.1007/s12223-009-0048-z. Epub 2009 Oct 14. Folia Microbiol (Praha). 2009. PMID: 19826918 Review.
Cited by
-
Cellular interactions and evolutionary origins of endosymbiotic relationships with ciliates.ISME J. 2024 Jan 8;18(1):wrae117. doi: 10.1093/ismejo/wrae117. ISME J. 2024. PMID: 38916437 Free PMC article. Review.
-
Retention of blue-green cryptophyte organelles by Mesodinium rubrum and their effects on photophysiology and growth.J Eukaryot Microbiol. 2025 Mar-Apr;72(2):e13066. doi: 10.1111/jeu.13066. Epub 2024 Nov 25. J Eukaryot Microbiol. 2025. PMID: 39584600 Free PMC article.
-
Cascading effects of prey identity on gene expression in a kleptoplastidic ciliate.J Eukaryot Microbiol. 2023 Jan;70(1):e12940. doi: 10.1111/jeu.12940. Epub 2022 Sep 1. J Eukaryot Microbiol. 2023. PMID: 35975609 Free PMC article.
References
-
- Cunningham, B. R., Greenwold, M. J., Lachenmyer, E. M., Heidenreich, K. M., Davis, A. C., Dudycha, J. L. & Richardson, T. L. 2019. Light capture and pigment diversity in marine and freshwater cryptophytes. J. Phycol. 55:552-64.
-
- Deblois, C. P., Marchand, A. & Juneau, P. 2013. Comparison of photoacclimation in twelve freshwater photoautotrophs (Chlorophyte, Bacillaryophyte, Cryptophyte and Cyanophyte) isolated from a natural community. PLoS ONE 8:e57139.
-
- Doust, A. B., Wilk, K. E., Curmi, P. M. G. & Scholes, G. D. 2006. The photophysics of cryptophyte light-harvesting. J. Photochem. Photobiol. A: Chem. 184:1-17.
-
- Flynn, K. J., Mitra, A., Anestis, K., Anschütz, A. A., Calbet, A., Ferreira, G. D., Gypens, N. et al. 2019. Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now? J. Plankt. Res. 41:375-91.
-
- Garcia-Cuetos, L., Moestrup, Ø. & Hansen, P. J. 2012. Studies on the genus Mesodinium II. Ultrastructural and molecular investigations of five marine species help clarifying the taxonomy. J. Euk. Microbiol. 59:374-400.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources