Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Feb 1;171(3):425-33.
doi: 10.1111/j.1432-1033.1988.tb13807.x.

The Na+/K+/Cl- cotransport in C6 glioma cells. Properties and role in volume regulation

Affiliations
Free article

The Na+/K+/Cl- cotransport in C6 glioma cells. Properties and role in volume regulation

O Chassande et al. Eur J Biochem. .
Free article

Abstract

The role of the Na+/K+/Cl- cotransporter in the regulation of the volume of C6 astrocytoma cells was analyzed using isotopic fluxes and cell cytometry measurements of the cell volume. The system was inhibited by 'loop diuretics' with the following order of potency: benzmetanide greater than bumetanide greater than piretanide greater than furosemide. Under physiological conditions of osmolarity of the incubation media, equal rates of bumetanide-sensitive inward and outward K+ fluxes were observed. Blockade of the Na+/K+/Cl- cotransporter with bumetanide did not lead to a modification in the mean cell volume. When C6 cells were incubated in an hyperosmotic solution, a cell shrinkage was observed. It was accompanied by a twofold increase in the activity of the Na+/K+/Cl- cotransport, which then catalyzed the net influx of K+. In spite of this increased activity, no cell swelling could be measured. Incubation of the cells in an iso-osmotic medium deprived of either Na+, K+ or Cl- also produced cell shrinkage. Large activations (up to tenfold) of the Na+/K+/Cl- cotransport together with a cell swelling back to the normal volume were observed upon returning ion-deprived C6 cells to a physiological solution. This cell swelling was completely prevented in the presence of bumetanide. It is concluded that the Na+/K+/Cl- cotransport system is one of the transport systems involved in volume regulation of glial cells. The system can either be physiologically quiescent or active depending on the conditions used. A distinct volume regulating mechanism is the Na+/H+ exchange system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources