Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 5:894:173871.
doi: 10.1016/j.ejphar.2021.173871. Epub 2021 Jan 16.

Suppression of Nanog inhibited cell migration and increased the sensitivity of colorectal cancer cells to 5-fluorouracil

Affiliations

Suppression of Nanog inhibited cell migration and increased the sensitivity of colorectal cancer cells to 5-fluorouracil

Neda Khosravi et al. Eur J Pharmacol. .

Abstract

Nanog is a major transcription factor related to cellular multipotency that plays important roles in the development of tumor cells, drug resistance, migration, and stemness; indicating its great potential as a therapeutic target for various malignancies including colorectal cancer (CRC). Therefore, this study was aimed to evaluate the Nanog suppression effect using small interference RNA (siRNA) combined with 5-fluorouracil (5-FU) on CRC cells. Nanog-overexpressing SW-480 cells were transfected with Nanog si-RNA and treated with 5-FU, in combination or separately. Subsequently, it was observed that Nanog expression was significantly reduced after transfection of SW-480 cells using Nanog siRNA in mRNA and protein levels. Furthermore, Nanog knockdown significantly increased CRC cell sensitivity to 5-FU drug via modulating Bax and Bcl-2 mRNA expression. Also, Nanog knockdown and 5-FU treatment cooperatively decreased the migration and self-renewal ability of SW-480 cells by regulating the expression of relevant genes. Moreover, combination therapy led to cell cycle arrest at the sub-G1 phase in CRC cells. In conclusion, our results indicated that Nanog may play an important role in the drug sensitivity, migration, and self-renewal of CRC cells; suggesting Nanog as a promising target in combination with 5-FU for the development of new therapeutic approaches for CRC.

Keywords: 5-Fluorouracil; Chemosensitivity; Colorectal cancer; Nanog; siRNA.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources