Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar 15;263(8):3835-9.

Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex

Affiliations
  • PMID: 3346226
Free article

Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex

G C Ferreira et al. J Biol Chem. .
Free article

Abstract

Protoporhyrinogen oxidase (EC 1.3.3.4), the penultimate enzyme of the heme biosynthetic pathway, catalyzes the removal of six hydrogens from protoporphyrinogen IX to form protoporphyrin IX. The enzyme in eukaryotes is associated with the inner mitochondrial membrane. In the present study we have examined requirements for solubilization of this enzyme and find that it behaves as an intrinsic membrane protein that is solubilized only with detergents such as sodium cholate. The in situ orientation of the enzyme with respect to the inner mitochondrial membrane places the active site on the cytosolic face of this membrane rather than the matrix side where the active site of ferrochelatase, the terminal pathway enzyme, is located. Examination of the kinetics of the two terminal enzymes in mitochondrial membranes demonstrates that substrate channeling occurs between these terminal two-pathway enzymes. However, examination of solubilized and membrane-reconstituted enzymes shows no evidence for a stable complex. Based upon these and previous data a model for the terminal three-pathway enzymes is presented.

PubMed Disclaimer

Publication types

MeSH terms