Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 13;6(1):358-366.
doi: 10.1021/acsbiomaterials.9b01323. Epub 2019 Dec 4.

Slippery Liquid-Attached Surface for Robust Biofouling Resistance

Affiliations

Slippery Liquid-Attached Surface for Robust Biofouling Resistance

Qianni Wu et al. ACS Biomater Sci Eng. .

Abstract

Materials for biodevices and bioimplants commonly suffer from unwanted but unavoidable biofouling problems due to the nonspecific adhesion of proteins, cells, or bacteria. Chemical coating or physical strategies for reducing biofouling have been pursued, yet highly robust antibiofouling surfaces that can persistently resist contamination in biological environments are still lacking. In this study, we developed a facile method to fabricate a highly robust slippery and antibiofouling surface by conjugating a liquid-like polymer layer to a substrate. This slippery liquid-attached (SLA) surface was created via a one-step equilibration reaction by tethering methoxy-terminated polydimethylsiloxane (PDMS-OCH3) polymer brushes onto a substrate to form a transparent "liquid-like" layer. The SLA surface exhibited excellent sliding behaviors toward a wide range of liquids and small particles and antibiofouling properties against the long-term adhesion of small biomolecules, proteins, cells, and bacteria. Moreover, in contrast to superomniphobic surfaces and liquid-infused porous surfaces (SLIPS) requiring micro/nanostructures, the SLA layer could be obtained on smooth surfaces and maintain its biofouling resistance under abrasion with persistent stability. Our study offers a simple method to functionalize surfaces with robust slippery and antibiofouling properties, which is promising for potential applications including medical implants and biodevices.

Keywords: abrasion resistance; liquid-like polymer layer; long-term antibiofouling; optical transparency; slippery surface; smooth surface.

PubMed Disclaimer

Publication types