Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 11;2(4):454-472.
doi: 10.1021/acsbiomaterials.5b00429. Epub 2016 Mar 4.

Polymeric Biomaterials for Medical Implants and Devices

Affiliations

Polymeric Biomaterials for Medical Implants and Devices

Adrian J T Teo et al. ACS Biomater Sci Eng. .

Abstract

In this review article, we focus on the various types of materials used in biomedical implantable devices, including the polymeric materials used as substrates and for the packaging of such devices. Polymeric materials are used because of the ease of fabrication, flexibility, and their biocompatible nature as well as their wide range of mechanical, electrical, chemical, and thermal behaviors when combined with different materials as composites. Biocompatible and biostable polymers are extensively used to package implanted devices, with the main criteria that include gas permeability and water permeability of the packaging polymer to protect the electronic circuit of the device from moisture and ions inside the human body. Polymeric materials must also have considerable tensile strength and should be able to contain the device over the envisioned lifetime of the implant. For substrates, structural properties and, at times, electrical properties would be of greater concern. Section 1 gives an introduction of some medical devices and implants along with the material requirements and properties needed. Different synthetic polymeric materials such as polyvinylidene fluoride, polyethylene, polypropylene, polydimethylsiloxane, parylene, polyamide, polytetrafluoroethylene, poly(methyl methacrylate), polyimide, and polyurethane have been examined, and liquid crystalline polymers and nanocomposites have been evaluated as biomaterials that are suitable for biomedical packaging (section 2). A summary and glimpse of the future trend in this area has also been given (section 3). Materials and information used in this manuscript are adapted from papers published between 2010 and 2015 representing the most updated information available on each material.

Keywords: biocompatible; biomedical; medical devices; medical implants; packaging; polymer.

PubMed Disclaimer

LinkOut - more resources