Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar;8(3):945-74.
doi: 10.1523/JNEUROSCI.08-03-00945.1988.

Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation

Affiliations

Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation

S K McConnell. J Neurosci. 1988 Mar.

Abstract

In the mammalian cerebral cortex, neurons in a given layer are generated at about the same time in development. These cells also tend to share similar sets of morphological and physiological properties and have projection patterns characteristic of that layer. This correspondence between the birthday and eventual fate of a cortical neuron suggests the possibility that the commitment of a cell to a particular laminar position and set of connections may occur very early on in cortical development. The experiments described here constitute an attempt to manipulate the fates of newly generated cortical neurons upon transplantation. The first set of experiments addressed the normal development of neurons in the primary visual cortex (area 17) of the ferret. Injections of 3H-thymidine into newborn ferrets showed that neurons generated after birth are destined to sit in layer 2/3 of the cortex, whereas neurons born on embryonic day (E) 32 populate primarily layers 5 and 6. Many layer 2/3 neurons in adult ferrets could be retrogradely labeled with HRP from visual cortical areas 18 and 19, while about half of the neurons in layer 6 were found to project to the lateral geniculate nucleus (LGN). In the second set of experiments, presumptive layer 2/3 cells were labeled in vivo by injecting ferrets with 3H-thymidine on P1 and P2. Before the cells had a chance to migrate, they were removed from the donor brain, incubated in a fluorescent dye (DAPI or fast blue), and dissociated into a single-cell suspension. The labeled cells were then transplanted into the proliferative zone of a littermate host ferret ("isochronic" transplants). Over the next few weeks, many of these dye-labeled cells underwent changes in their position and morphology that were consistent with a radially directed migration and subsequent differentiation into cortical neurons. The final positions of isochronically transplanted neurons in the host brain were mapped out by using the 3H-thymidine marker after long survival periods. About 97% of radioactively labeled cells had migrated out into the visual cortex, where they attained a compact laminar distribution: 99% were found in layer 2/3, their normal destination. The labeled cells had normal, mostly pyramidal neuronal morphologies and appeared to be well integrated with host neurons when viewed in Nissl-stained sections. Ten isochronically transplanted neurons were successfully labeled after HRP injection into 2 normal target regions, areas 18 and 19.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources