Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 19;20(1):48.
doi: 10.1186/s12936-021-03585-6.

Anti-malarial efficacy and resistance monitoring of artemether-lumefantrine and dihydroartemisinin-piperaquine shows inadequate efficacy in children in Burkina Faso, 2017-2018

Affiliations

Anti-malarial efficacy and resistance monitoring of artemether-lumefantrine and dihydroartemisinin-piperaquine shows inadequate efficacy in children in Burkina Faso, 2017-2018

Adama Gansané et al. Malar J. .

Abstract

Background: The World Health Organization recommends regularly assessing the efficacy of artemisinin-based combination therapy (ACT), which is a critical tool in the fight against malaria. This study evaluated the efficacy of two artemisinin-based combinations recommended to treat uncomplicated Plasmodium falciparum malaria in Burkina Faso in three sites: Niangoloko, Nanoro, and Gourcy.

Methods: This was a two-arm randomized control trial of the efficacy of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP). Children aged 6-59 months old were monitored for 42 days. The primary outcomes of the study were uncorrected and PCR-corrected efficacies to day 28 for AL and 42 for DP. Molecular markers of resistance to artemisinin derivatives and partner drugs were also analysed.

Results: Of 720 children enrolled, 672 reached study endpoints at day 28, 333 in the AL arm and 339 in the DP arm. PCR-corrected 28-day per protocol efficacy in the AL arm was 74% (64-83%) in Nanoro, 76% (66-83%) in Gourcy, and 92% (84-96%) in Niangoloko. The PCR-corrected 42-day per protocol efficacy in the DP arm was 84% (75-89%) in Gourcy, 89% (81-94%) in Nanoro, and 97% (92-99%) in Niangoloko. No Pfk13 mutation previously associated with artemisinin-resistance was observed. No statistically significant association was found between treatment outcome and presence of the 86Y mutation in the Pfmdr1 gene. There was also no association observed between treatment outcome and Pfpm2 or Pfmdr1 copy number variation.

Conclusion: The results of this study indicate evidence of inadequate efficacy of AL at day 28 and DP at day 42 in the same two sites. A change of first-line ACT may be warranted in Burkina Faso. Trial Registry Pan African Clinical Trial Registry Identifier: PACTR201708002499311. Date of registration: 8/3/2017 https://pactr.samrc.ac.za/Search.aspx.

Keywords: Antimalarial; Artemether-lumefantrine; Burkina faso; Dihydroartemisinin-piperaquine; Efficacy; Plasmodium falciparum.

PubMed Disclaimer

Conflict of interest statement

All co-authors have no conflicts of interest to declare.

Figures

Fig. 1
Fig. 1
Map of therapeutic efficacy study sites, Burkina Faso, 2017–2018
Fig. 2
Fig. 2
Therapeutic efficacy study flow chart, Burkina Faso, 2017–2018. RDT: rapid diagnostic test. AL: artemether-lumefantrine. DP: dihydroartemisinin-piperaquine. Danger signs include inability to drink or breastfeed, repeated vomiting (> 2 times in 24 h), convulsions, unconscious state, inability to sit or stand
Fig. 3
Fig. 3
Copy number variation in dihydroartemisinin-piperaquine arm for pfpm2 copy number (n = 131) and artemether-lumefantrine arm for pfmdr1 (n = 235) in pre-treatment samples collected for therapeutic efficacy monitoring in three sites in Burkina Faso

References

    1. World Health Organization . World malaria report 2019. Geneva: World Health Organization; 2019.
    1. Diallo A, Sié A, Sirima S, Sylla K, Ndiaye M, Bountogo M, et al. An epidemiological study to assess Plasmodium falciparum parasite prevalence and malaria control measures in Burkina Faso and Senegal. Malar J. 2017;16:63. doi: 10.1186/s12936-017-1715-1. - DOI - PMC - PubMed
    1. Ouédraogo AL, Gonçalves BP, Gnémé A, Wenger EA, Guelbeogo MW, Ouédraogo A, et al. Dynamics of the human infectious reservoir for malaria determined by mosquito feeding assays and ultrasensitive malaria diagnosis in Burkina Faso. J Infect Dis. 2016;213:90–99. doi: 10.1093/infdis/jiv370. - DOI - PubMed
    1. Bloland PB. Drug resistance in malaria. Geneva: World Health Organization; 2001.
    1. Gansané A, Nébié I, Soulama I, Tiono A, Diarra A, Konaté AT, et al. [Change of antimalarial first-line treatment in Burkina Faso in 2005](in French) Bull Soc Path Exot. 2009;102:31–35. doi: 10.3185/pathexo3235. - DOI - PubMed

LinkOut - more resources