Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan;9(1):e001460.
doi: 10.1136/jitc-2020-001460.

Rethinking immune checkpoint blockade: 'Beyond the T cell'

Affiliations
Review

Rethinking immune checkpoint blockade: 'Beyond the T cell'

Xiuting Liu et al. J Immunother Cancer. 2021 Jan.

Abstract

The clinical success of immune checkpoint inhibitors has highlighted the central role of the immune system in cancer control. Immune checkpoint inhibitors can reinvigorate anti-cancer immunity and are now the standard of care in a number of malignancies. However, research on immune checkpoint blockade has largely been framed with the central dogma that checkpoint therapies intrinsically target the T cell, triggering the tumoricidal potential of the adaptive immune system. Although T cells undoubtedly remain a critical piece of the story, mounting evidence, reviewed herein, indicates that much of the efficacy of checkpoint therapies may be attributable to the innate immune system. Emerging research suggests that T cell-directed checkpoint antibodies such as anti-programmed cell death protein-1 (PD-1) or programmed death-ligand-1 (PD-L1) can impact innate immunity by both direct and indirect pathways, which may ultimately shape clinical efficacy. However, the mechanisms and impacts of these activities have yet to be fully elucidated, and checkpoint therapies have potentially beneficial and detrimental effects on innate antitumor immunity. Further research into the role of innate subsets during checkpoint blockade may be critical for developing combination therapies to help overcome checkpoint resistance. The potential of checkpoint therapies to amplify innate antitumor immunity represents a promising new field that can be translated into innovative immunotherapies for patients fighting refractory malignancies.

Keywords: CTLA-4 Antigen; immunity; immunotherapy; innate; programmed cell death 1 receptor; tumor microenvironment.

PubMed Disclaimer

Conflict of interest statement

Competing interests: None declared.

Figures

Figure 1
Figure 1
Direct and indirect regulation of innate immune subsets by PD-1 blockade. The regulation of innate immune cells by PD-1 blockade is divided into direct (left) and indirect (right) pathways. In the direct pathway, PD-1 blockade reshapes the phenotypes and functions of innate immune subsets, such as TAMs, DCs, MDSCs, NK cells, and ILC2s, expressing PD-1 (left). In the indirect pathway, T cells activated by anti-PD-1 secrete IFN-y, which in turn phenotypically polarizes myeloid cells within the TME (right). Bold arrows indicate interactions. DCs, dendritic cells; IFN-y, interferon gamma; ILCs, innate lymphoid cells; MDSCs, myeloid-derived suppressor cells: NK, natural killer cells; PD-1, programmed cell death protein 1; TAMs, tumor-associated macrophages; TEM, tumor microenvironment.
Figure 2
Figure 2
Direct and indirect signaling pathways downstream of PD-1 blockade in myeloid cells. PD-1 blockade results in direct (left) and indirect (right) signaling outcomes. Direct PD-1 blockade in PD-1 expressing myeloid cells activates NF-κB and pSTAT1 signaling pathways and reprograms glycometabolism (left). In the indirect pathway, anti-PD-1 activated T cells secrete IFN-y which triggers NF-κB and pSTAT1 signaling pathways in myeloid cells (right). Arrows indicate downstream outcomes of PD-1 blockade. IFN-γ, interferon gamma; PD-1, programmed cell death protein 1.

References

    1. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271:1734–6. 10.1126/science.271.5256.1734 - DOI - PubMed
    1. Wilky BA. Immune checkpoint inhibitors: the linchpins of modern immunotherapy. Immunol Rev 2019;290:6–23. 10.1111/imr.12766 - DOI - PubMed
    1. Nishimura H, Nose M, Hiai H, et al. . Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11:141–51. 10.1016/S1074-7613(00)80089-8 - DOI - PubMed
    1. Henick BS, Herbst RS, Goldberg SB. The PD-1 pathway as a therapeutic target to overcome immune escape mechanisms in cancer. Expert Opin Ther Targets 2014;11:1–14. 10.1517/14728222.2014.955794 - DOI - PubMed
    1. Baumeister SH, Freeman GJ, Dranoff G, et al. . Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol 2016;34:539–73. 10.1146/annurev-immunol-032414-112049 - DOI - PubMed

Publication types

MeSH terms

Substances