Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 13:15:159-170.
doi: 10.2147/DDDT.S287323. eCollection 2021.

Subcutaneous Delivery of High-Dose/Volume Biologics: Current Status and Prospect for Future Advancements

Affiliations
Review

Subcutaneous Delivery of High-Dose/Volume Biologics: Current Status and Prospect for Future Advancements

Advait V Badkar et al. Drug Des Devel Ther. .

Abstract

Subcutaneous (SC) delivery of biologics has traditionally been limited to fluid volumes of 1-2 mL, with recent increases to volumes of about 3 mL. This injection volume limitation poses challenges for high-dose biologics, as these formulations may also require increased solution concentration in many cases, resulting in high viscosities which can affect the stability, manufacturability, and delivery/administration of therapeutic drugs. Currently, there are technologies that can help to overcome these challenges and facilitate the delivery of larger amounts of drug through the SC route. This can be achieved either by enabling biologic molecules to be formulated or delivered as high-concentration injectables (>100 mg/mL for antibodies) or through facilitating the delivery of larger volumes of fluid (>3 mL). The SC Drug Delivery and Development Consortium, which was established in 2018, aims to identify and address critical gaps and issues in the SC delivery of high-dose/volume products to help expand this delivery landscape. Identified as a high priority out of the Consortium's eight problem statements, it highlights the need to shift perceptions of the capabilities of technologies that enable the SC delivery of large-volume (>3 mL) and/or high-dose biologics. The Consortium emphasizes a patient-focused approach towards the adoption of SC delivery of large-volume/high-concentration dosing products to facilitate the continued expansion of the capabilities of novel SC technologies. To raise awareness of the critical issues and gaps in high-dose/volume SC drug development, this review article provides a generalized overview of currently available and emerging technologies and devices that could facilitate SC delivery of high-dose/volume drug formulations. In addition, it discusses the challenges, gaps, and future outlook in high-dose/volume SC delivery as well as potential solutions to exploit the full value of the SC route of administration.

Keywords: drug delivery technologies; high-dose biologic; intravenous drug delivery; large-volume subcutaneous delivery; patient preference; subcutaneous drug delivery.

PubMed Disclaimer

Conflict of interest statement

Advait V Badkar is an employee and stockholder of Pfizer. Rajesh B Gandhi is an employee and stockholder of Bristol-Myers Squibb. Shawn Davis is an employee and stockholder of AstraZeneca. Michael J LaBarre is an employee and stockholder of Halozyme Therapeutics, Inc. The authors report no other potential conflicts of interest for this work.

Figures

Figure 1
Figure 1
Overview of the current technology/device landscape to facilitate the subcutaneous (SC) delivery of large-volume (typically >3–25 mL but as high as 600 mL) and high-dose biologics in a home, office, or clinical/infusion center.

Similar articles

Cited by

References

    1. Andrews L, Ralston S, Blomme E, Barnhart K. A snapshot of biologic drug development: challenges and opportunities. Hum Exp Toxicol. 2015;34(12):1279–1285. doi:10.1177/0960327115603594 - DOI - PubMed
    1. Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2019;18(1):19–40. doi:10.1038/nrd.2018.183 - DOI - PubMed
    1. Anderson D, Liu R, Anand Subramony J, Cammack J. Design control considerations for biologic-device combination products. Adv Drug Deliv Rev. 2017;112:101–105. doi:10.1016/j.addr.2017.01.003 - DOI - PubMed
    1. Chung SW, Hil-lal TA, Byun Y. Strategies for non-invasive delivery of biologics. J Drug Target. 2012;20(6):481–501. doi:10.3109/1061186X.2012.693499 - DOI - PubMed
    1. US Food and Drug Administration. Patient-focused drug development: collecting comprehensive and representative input guidance for industry, food and drug administration staff, and other stakeholders. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents.... Accessed March16, 2020.

MeSH terms

Substances