This is a preprint.
Tropism of SARS-CoV-2 for Developing Human Cortical Astrocytes
- PMID: 33469577
- PMCID: PMC7814814
- DOI: 10.1101/2021.01.17.427024
Tropism of SARS-CoV-2 for Developing Human Cortical Astrocytes
Update in
-
Tropism of SARS-CoV-2 for human cortical astrocytes.Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2122236119. doi: 10.1073/pnas.2122236119. Epub 2022 Jul 12. Proc Natl Acad Sci U S A. 2022. PMID: 35858406 Free PMC article.
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. It proves fatal for one percent of those infected. Neurological symptoms, which range in severity, accompany a significant proportion of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized primary human cortical tissue and stem cell-derived cortical organoids. We find significant and predominant infection in cortical astrocytes in both primary and organoid cultures, with minimal infection of other cortical populations. Infected astrocytes had a corresponding increase in reactivity characteristics, growth factor signaling, and cellular stress. Although human cortical cells, including astrocytes, have minimal ACE2 expression, we find high levels of alternative coronavirus receptors in infected astrocytes, including DPP4 and CD147. Inhibition of DPP4 reduced infection and decreased expression of the cell stress marker, ARCN1. We find tropism of SARS-CoV-2 for human astrocytes mediated by DPP4, resulting in reactive gliosis-type injury.
Figures




Similar articles
-
Tropism of SARS-CoV-2 for human cortical astrocytes.Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2122236119. doi: 10.1073/pnas.2122236119. Epub 2022 Jul 12. Proc Natl Acad Sci U S A. 2022. PMID: 35858406 Free PMC article.
-
The original strain of SARS-CoV-2, the Delta variant, and the Omicron variant infect microglia efficiently, in contrast to their inability to infect neurons: Analysis using 2D and 3D cultures.Exp Neurol. 2023 May;363:114379. doi: 10.1016/j.expneurol.2023.114379. Epub 2023 Mar 11. Exp Neurol. 2023. PMID: 36914084 Free PMC article.
-
Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium.Cell Stem Cell. 2020 Dec 3;27(6):937-950.e9. doi: 10.1016/j.stem.2020.09.016. Epub 2020 Sep 21. Cell Stem Cell. 2020. PMID: 33010822 Free PMC article.
-
Human organoid models to study SARS-CoV-2 infection.Nat Methods. 2022 Apr;19(4):418-428. doi: 10.1038/s41592-022-01453-y. Epub 2022 Apr 8. Nat Methods. 2022. PMID: 35396481 Review.
-
Host-Cell Surface Binding Targets in SARS-CoV-2 for Drug Design.Curr Pharm Des. 2022;28(45):3583-3591. doi: 10.2174/1381612829666221123111849. Curr Pharm Des. 2022. PMID: 36420875 Review.
Cited by
-
Why antidiabetic drugs are potentially neuroprotective during the Sars-CoV-2 pandemic: The focus on astroglial UPR and calcium-binding proteins.Front Cell Neurosci. 2022 Jul 29;16:905218. doi: 10.3389/fncel.2022.905218. eCollection 2022. Front Cell Neurosci. 2022. PMID: 35966209 Free PMC article. Review.
-
Brain organoids for addressing COVID-19 challenge.Front Neurosci. 2022 Nov 29;16:1055601. doi: 10.3389/fnins.2022.1055601. eCollection 2022. Front Neurosci. 2022. PMID: 36523428 Free PMC article. Review.
References
-
- Varatharaj A., Thomas N., Ellul M. A., Davies N. W. S., Pollak T. A., Tenorio E. L., Sultan M., Easton A., Breen G., Zandi M., Coles J. P., Manji H., Al-Shahi Salman R., Menon D. K., Nicholson T. R., Benjamin L. A., Carson A., Smith C., Turner M. R., Solomon T., Kneen R., Pett S. L., Galea I., Thomas R. H., Michael B. D., CoroNerve Study Group, Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 7, 875–882 (2020). - PMC - PubMed
-
- Meinhardt J., Radke J., Dittmayer C., Franz J., Thomas C., Mothes R., Laue M., Schneider J., Brünink S., Greuel S., Lehmann M., Hassan O., Aschman T., Schumann E., Chua R. L., Conrad C., Eils R., Stenzel W., Windgassen M., Rößler L., Goebel H.-H., Gelderblom H. R., Martin H., Nitsche A., Schulz-Schaeffer W. J., Hakroush S., Winkler M. S., Tampe B., Scheibe F., Körtvélyessy P., Reinhold D., Siegmund B., Kühl A. A., Elezkurtaj S., Horst D., Oesterhelweg L., Tsokos M., Ingold-Heppner B., Stadelmann C., Drosten C., Corman V. M., Radbruch H., Heppner F. L., Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. (2020), doi:10.1038/s41593-020-00758-5. - DOI - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous