Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr:195:110653.
doi: 10.1016/j.envres.2020.110653. Epub 2021 Jan 18.

Estimating hourly PM2.5 concentrations at the neighborhood scale using a low-cost air sensor network: A Los Angeles case study

Affiliations

Estimating hourly PM2.5 concentrations at the neighborhood scale using a low-cost air sensor network: A Los Angeles case study

Yougeng Lu et al. Environ Res. 2021 Apr.

Abstract

Predicting PM2.5 concentrations at a fine spatial and temporal resolution (i.e., neighborhood, hourly) is challenging. Recent growth in low cost sensor networks is providing increased spatial coverage of air quality data that can be used to supplement data provided by monitors of regulatory agencies. We developed an hourly, 500 × 500 m gridded PM2.5 model that integrates PurpleAir low-cost air sensor network data for Los Angeles County. We developed a quality control scheme for PurpleAir data. We included spatially and temporally varying predictors in a random forest model with random oversampling of high concentrations to predict PM2.5. The model achieved high prediction accuracy (10-fold cross-validation (CV) R2 = 0.93, root mean squared error (RMSE) = 3.23 μg/m3; spatial CV R2 = 0.88, spatial RMSE = 4.33 μg/m3; temporal CV R2 = 0.90, temporal RMSE = 3.85 μg/m3). Our model was able to predict spatial and diurnal patterns in PM2.5 on typical weekdays and weekends, as well as non-typical days, such as holidays and wildfire days. The model allows for far more precise estimates of PM2.5 than existing methods based on few sensors. Taking advantage of low-cost PM2.5 sensors, our hourly random forest model predictions can be combined with time-activity diaries in future studies, enabling geographically and temporally fine exposure estimation for specific population groups in studies of acute air pollution health effects and studies of environmental justice issues.

Keywords: Air pollution; Fine particulate matter; PurpleAir sensors; Random forest model.

PubMed Disclaimer

Publication types

LinkOut - more resources