Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 18;26(2):483.
doi: 10.3390/molecules26020483.

Synthetic Routes to Coumarin(Benzopyrone)-Fused Five-Membered Aromatic Heterocycles Built on the α-Pyrone Moiety. Part 1: Five-Membered Aromatic Rings with One Heteroatom

Affiliations
Review

Synthetic Routes to Coumarin(Benzopyrone)-Fused Five-Membered Aromatic Heterocycles Built on the α-Pyrone Moiety. Part 1: Five-Membered Aromatic Rings with One Heteroatom

Eslam Reda El-Sawy et al. Molecules. .

Abstract

This review gives an up-to-date overview of the different ways (routes) to the synthesis of coumarin (benzopyrone)-fused, five-membered aromatic heterocycles with one heteroatom, built on the pyrone moiety. Covering 1966 to 2020.

Keywords: benzopyrones; coumarins; five-membered aromatic heterocycles; furan; pyrrole; selenophen; thiophene.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The three most common isomers of a furan ring fused to the α-pyrone moiety of coumarin.
Scheme 1
Scheme 1
The Nef reaction to synthesize furo[2,3-c]benzopyran-4-ones 3a,b and 4. Reagents and conditions: MeOH, piperidine, reflux, five outputs in 55%–61% yield.
Scheme 2
Scheme 2
Rhodium(III)-catalyzed sequential ortho-C–H oxidative arylation/cyclization of sulfoxonium ylide to afford 4H-furo[2,3-c]benzopyran-4-one (7). Reagents and conditions: [Cp*RhCl2]2 (5 mol %), AgBF4 (20 mol %), Zn(OAc)2 (0.225 mmol), AcOH (0.3 mmol), and acetone (2 mL), 12 h, in a sealed Schlenk tube under N2 at 100 °C, 25% yield.
Scheme 3
Scheme 3
Demethylation and in situ lactonization steps to prepare the first 4H-furo[3,4-c]benzopyran-4-one 10. Reagents and conditions: (a) ethyl acetoacetate or ethyl benzoylacetate, piperidine, and MeOH (the Nef reaction condition); (b) HBr, AcOH concentration, 130 °C, 4 h, 16 outputs with 50%–65% yield.
Scheme 4
Scheme 4
Synthesis of 2-methyl-3-phenylfuro[3,2-c]benzopyran-4-one (13). Reagents and conditions: AcOH, conc. H2SO4, 110 °C, 1 h, 70% yield.
Scheme 5
Scheme 5
Atom-efficient multicomponent reactions (MCRs) and step-efficient, one-pot synthesis of 4H-furo[3,2-c]benzopyran-4-one (16). Reagents and conditions: DMF or toluene, µw, 80 °C, 20 min, 97% yield.
Scheme 6
Scheme 6
A facile synthesis of 4H-furo[3,2-c]benzopyran-4-ones 19 by silver(I)/celite promoted an oxidative cycloaddition reaction. Reagents and conditions: (a) CH2=CHSPh and/or CH3CH=CHSPh, Ag2CO3/celite, acetonitrile, reflux, 3 h; (b) NaIO4, MeOH, CCl4, pyridine, Al2O3, four outputs with 71%–82% yield.
Scheme 7
Scheme 7
Transition metal Cu catalyzed/mediated methodologies for synthesis of the 4H-furo[3,2-c]benzopyran-4-ones 22 and 23. Reagents and conditions: (a) CH3SO3H, H2O, DMF, 90 °C, 1–3 h; (b) CuCl2, 90 °C, 20 h; (c) CuCl, O2, DMF, H2O, 90 °C, 10–20 h, 10 outputs with 37%–88% yield; (d) CuBr, CuCl2, DMF, H2O, 75 °C, 10 h, 13 outputs with 45%–81% yield.
Scheme 8
Scheme 8
One-pot synthesis of 4H-furo[3,2-c]chromen-4-one (25) using a Yb(OTf)3-catalyzed propargylation and allenylation reaction. Reagents and conditions: (a) 5 mol % Yb(OTf)3, CH3NO2, dioxane, 50 °C; (b) K2CO3, 70 °C, 37% yield.
Scheme 9
Scheme 9
The 16-electron allyl–ruthenium(II) complex in preparation of 4H-furo[3,2-c]benzopyran-4-one (27). Reagents and conditions: 16-electron allyl–ruthenium(II) complex [Ru(η3-2-C3H4Me)(CO)(dppf)][SbF6] (5 mol %), trifluoroacetic acid (TFA) (50 mol %), THF, 75 °C, 5 h, 72% yield.
Scheme 10
Scheme 10
Et3N-induced demethylation–annulation of an aryl alkynyl ether in the synthesis of 4H-furo[3,2-c]benzopyran-4-one (30). Reagents and conditions: (a) alkyne (3 equiv.), 8 mol % PdCl2(PPh3)2, 8 mol % CuI, Et3N/DMF, 80 °C, 48 h, 82% yield; (b) alkyne (3 equiv.), 8 mol % PdCl2(PPh3)2, 8 mol % CuI, Et3N/MeCN, 60 °C, 15 h, 70% yield.
Scheme 11
Scheme 11
A one-pot sequential coupling/cyclization strategy in the synthesis of 4H-furo[3,2-c]- benzopyran-4-ones 33. Reagents and conditions: (a) Pd(PPh3)2, CuI, THF, 60 °C; (b) K2CO3, H2O, 13 outputs with 51%–96% yield.
Scheme 12
Scheme 12
Metal-free synthesis of 4-H-furo[3,2-c]benzopyran-4-ones 36. Reagents and conditions: I2, NH4OAc, PhCl, 120 °C, 18 outputs with 28%–90% yield.
Scheme 13
Scheme 13
Regioselective synthesis of 4H-furo[3,2-c]chromen-4-one (41). Reagents and conditions: (a) ClCH2COCl, dry pyridine, 40 min, reflux, 85% yield; (b) AlCl3, 140–150 °C, 60% yield; (c) AlCl3, 140–150 °C, 30–40 min or K2CO3, acetone, 10 min, stirring, r.t., 50% yield; (d) NaBH4, 85% yield; (e) H2SO4 (30%), EtOH, heat, 30 min, 80% yield; (f) COCH2Cl, K2CO3, 73% yield; (g) HCl, 72% yield.
Scheme 14
Scheme 14
Rhodium(II)-catalyzed aryl C–H carboxylation with CO2 in the synthesis of 4H-furo[3,2-c] benzopyran-4-ones 43. Reagents and conditions: (a) Rh2(OAc)4 (1 mol %), tricyclohexylphosphine PCy3 (2 mol %), t-BuOK (4.5 equiv.), diglyme, 100 °C, 48 h, six outputs with 70%–86% yield.
Figure 2
Figure 2
The three common isomers of the pyrrole ring fused to the α-pyrone moiety of coumarin.
Scheme 15
Scheme 15
Different pathways to synthesize 3H,4H[1]benzo- pyrano[3,4-b]pyrrol-4-ones 45, 47, 49, and 50 via 3-aminocoumarin. Reagents and conditions: (a) i: NaNO2, HCl, −30 °C, ii: SnCl2, −10 °C, HCl, 2 h, iii: carbonyl compounds, polyphosphoric acid, 1 h, 130 °C, seven outputs with 33%–51% yield; (b) anhydride ethyl methyl ketone, K2CO3, NaI, reflux, 24–30 h, five outputs with 51%–63% yield; (c) N,N-dimethylaniline, reflux, 6–9 h, five outputs with 90%–94% yield; (d) KI (cat.), reflux, 5 h; (e) TFA (cat.), AcOH, 12 h, reflux, four outputs with 28%–86% yield; (f) MeOH, piperidine, reflux, five outputs with 55%–61% yield.
Scheme 16
Scheme 16
Synthesis of 1,3-diphenyl[l]benzopyrano[3,4-e]pyrrol-4-one (55). Reagents and conditions: DMF, stirring, 120 °C, 24 h, 51% yield.
Scheme 17
Scheme 17
Synthesis of [1]benzopyrano[3,4-e]pyrrol-4-ones 59 by a FeCl3-promoted, three-component reaction. Reagents and conditions: FeCl3, toluene, 110 °C, 6 h, 17 outputs with 62%–92% yield.
Scheme 18
Scheme 18
A sequential three-component reaction to synthesize [1]benzopyrano[3,4-e]pyrrol-4-ones 63. Reagents and conditions: TEA, piperidine, DMF, r.t., 8 h, 10 outputs with 62%–95% yield.
Scheme 19
Scheme 19
The Van Leusen protocol for the synthesis of [1]benzopyrano[3,4-e]pyrrol-4-ones 65. Reagents and conditions: K2CO3, EtOH, 15 min, r.t, three outputs with 72%–86% yield.
Scheme 20
Scheme 20
Synthetic protocol to synthesize [l]benzopyrano[4,3-b]pyrrole-4(1H)-ones 68. Reagents and conditions: TsOH.H2O, solvent-free, 24 outputs with 6%–77% yield.
Scheme 21
Scheme 21
Synthetic protocol to synthesize [l]benzopyrano[4,3-b]pyrrole-4(1H)-ones 72. Reagents and conditions: CuFe2O4, H2O, 70 °C, 25 outputs with 68%–94% yield; or KHSO4, toluene, reflux, 23 outputs with 37%–93% yield.
Scheme 22
Scheme 22
Synthesis of [l]benzopyrano[4,3-b]pyrrol-4-ones 76 from 4-chlorocoumarin. Reagents and conditions: (a) i: EtOH, TEA, HCl.N(Me)OMe, ii: CH2Cl2, TEA, DCC; (b) i: organometallic compounds (R3M), THF, N2, -H2O, ii: NaOEt, EtOH, r.t., 2 h, reflux, 1 h, nine outputs with 27%–92% yield.
Scheme 23
Scheme 23
The scope of 4-aminocoumarins in the preparation of [l]benzopyrano[4,3-b]pyrrol-4-ones 79. Reagents and conditions: Pd(OAc)2, oxidant, DMSO, 100 °C, 12 outputs with 72%–99% yield.
Scheme 24
Scheme 24
Various arylglyoxals in the synthesis of [l]benzopyrano[4,3-b]pyrrol-4-ones 82, 83, and 85. Reagents and conditions: (a) i: AcOH, reflux, 40 min; ii: an appropriate alkyl p-toluenesulfonate (TsOR2), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), toluene, reflux, 1.5 h, 14 outputs with 73%–89% yield; (b) R1=Ph, 4-CH3OC6H4, 4-CH3C6H4, 4-FC6H4, 4-ClC6H4, 4-BrC6H4, 2-thienyl; dimedone, 2-hydroxy-1,4-naphtoquinone barbituric acid, 1,3 dimethyl barbituric acid, I2, DMSO, stirring, 100 °C, 7 h, 15 outputs with 15%–80% yield.
Figure 3
Figure 3
The three common isomers of the thiophene ring fused to the α-pyrone moiety of coumarin.
Scheme 25
Scheme 25
Synthesis of 4H-thieno[2,3-c]benzopyran-4-one (88). Reagents and conditions: 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,4-dioxane, 60 °C, 12 h, N2, 95% yield.
Scheme 26
Scheme 26
4H-thieno[3,4-c]benzopyran-4-ones 91 and 92 via a Suzuki–Miyaura cross coupling reaction. Reagents and conditions: (a) Pd(PPh3)4 (10 mol %), Cs2CO3 (4 equiv.), DME, H2O, MW 125 °C, 15 min, 86% yield; (b) i: Pd(PPh3)4 (5 mol %), K3PO4 (1.5 equiv.), 1,4-dioxane, 90 °C, 4 h; ii: (a) BBr3, CH2Cl2, (b) KOtBu, H2O, five outputs with 75%–81% yield [83].
Scheme 27
Scheme 27
The Gewald reaction to synthesize 4H-thieno[3,4-c]benzopyran-4-one (94). Reagents and conditions: (a) CNCH2COOEt, base; (b) NH3, EtOH, 48% yield [85], 37% yield [90].
Scheme 28
Scheme 28
Synthesis of 4H-thieno[3,4-c] [1]benzopyran-4(4H)-ones 97 via [4 + 1] annulations. Reagents and conditions: NaOH, diethyl azodicarboxylate (DEAD), MeCN, r.t., 20 min, 17 outputs with 68%–95% yield.
Scheme 29
Scheme 29
A plausible reaction mechanism proposed for the preparation of 4H-thieno[3,4-c][1] benzopyran-4(4H)-ones 99. Reagents and conditions: [Rh(COD)Cl]2 (5 mol %), 1,1′-Ferrocenediyl-bis(diphenylphosphine) (DPPF) (12 mol %), PhCl, 130 °C, 30 min, three outputs with 75%–90% yield.
Scheme 30
Scheme 30
The synthesis of 4H-thieno[3,2-c][1]benzopyran-4(4H)-ones 102 and 103 via the cyclization of Vilsmeier–Haack products. Reagents and conditions: (a) POCl3, DMF, 60 °C, overnight; (b) SHCH2COOR1, EtOH, base, 90% yield [25], 88% yield [94]; (c) 1,4-dithiane-2,5-diole, K2CO3, acetone, stirring, 1 h, r.t., 45 °C, 3 h, 85% yield.
Scheme 31
Scheme 31
One-pot synthesis of 4H-thieno[3,2-c][1]benzopyran-4(4H)-one (105) by CO insertion into phenol. Reagents and conditions: 10 mol % Pd(OAc)2, AgOAc, CH3CN, 80 °C, 48 h, 62% yield.
Figure 4
Figure 4
The two common isomers of the selenophene ring fused to the α-pyrone moiety of coumarin.
Scheme 32
Scheme 32
Reagents and reaction conditions: a: PdCl2 (10 mol %), Ph3P (20 mol %), CuI (10 mol %), terminal acetylene (1.5 equiv.), NMP, Et3N, 55 °C, 20 h; b: (Ph3P)4Pd (5 mol %), CuI (20 mol %), terminal acetylene (1.5 equiv.), DMF, Et3N, r.t., 20 h; c: SeO2 (2 equiv.), conc. HBr, dioxane, r.t., 24–48 h, compounds 108, four outputs with 68%–75% yield; compounds 111, four outputs with 64%–70% yield.
Scheme 33
Scheme 33
Synthesis of selenopheno[2,3-c]benzopyran-4-ones (115) from 4-hydroxycoumarin. Reagents and reaction conditions: a: POCl3, DMF, 84% yield; b: NH2OH.HCl, 80% yield; c: Se, NaBH4, EtOH, 85% yield; d: ClCH2CN(R), DMF, stirring, r.t., 2 h, three outputs with 80%–88% yield.

Similar articles

Cited by

References

    1. Molnar M., Lončarić M., Kovač M. Green Chemistry Approaches to the Synthesis of Coumarin Derivatives. Curr. Org. Chem. 2020;24:4–43. doi: 10.2174/1385272824666200120144305. - DOI
    1. Matos M.J., Santana L., Uriarte E., Abreu O.A., Molina E., Yordi E.G. Coumarins—An Important Class of Phytochemicals. Phytochem. Isol. Characterisation Role Hum. Health. 2015 doi: 10.5772/59982. - DOI
    1. Lončarić M., Gašo-Sokač D., Jokić S., Molnar M. Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials. Biomolecules. 2020;10:151. doi: 10.3390/biom10010151. - DOI - PMC - PubMed
    1. Salem M.A., Helal M.H., Gouda M.A., Ammar Y.A., El-Gaby M.S.A., Abbas S.Y. An Overview on Synthetic Strategies to Coumarins. Synth. Commun. 2018;48:1534–1550. doi: 10.1080/00397911.2018.1455873. - DOI
    1. Irfan A., Rubab L., Rehman M.U., Anjum R., Ullah S., Marjana M., Qadeer S., Sana S. Coumarin Sulfonamide Derivatives: An Emerging Class of Therapeutic Agents. Heterocycl. Commun. 2020;26:46–59. doi: 10.1515/hc-2020-0008. - DOI

MeSH terms

LinkOut - more resources