Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan;15(1):26-35.
doi: 10.1111/crj.13265. Epub 2020 Sep 15.

Responses to progressive exercise in subjects with chronic dyspnea and inspiratory muscle weakness

Affiliations

Responses to progressive exercise in subjects with chronic dyspnea and inspiratory muscle weakness

Danilo C Berton et al. Clin Respir J. 2021 Jan.

Abstract

Introduction: Inspiratory muscle weakness (IMW) is a potential cause of exertional dyspnea frequently under-appreciated in clinical practice. Cardiopulmonary exercise testing (CPET) is usually requested as part of the work-up for unexplained breathlessness, but the specific pattern of exercise responses ascribed to IMW is insufficiently characterized.

Objectives: To identify the physiological and sensorial responses to progressive exercise in dyspneic patients with IMW without concomitant cardiorespiratory or neuromuscular diseases.

Methods: Twenty-three subjects (18 females, 55.2 ± 16.9 years) complaining of chronic daily life dyspnea (mMRC = 3 [2-3]) plus maximal inspiratory pressure < the lower limit of normal and 12 matched controls performed incremental cycling CPET. FEV1/FVC<0.7, significant abnormalities in chest CT or echocardiography, and/or an established diagnosis of neuromuscular disease were among the exclusion criteria.

Results and conclusion: Patients presented with reduced aerobic capacity (peak V̇O2: 79 ± 26 vs 116 ± 21 %predicted), a tachypneic breathing pattern (peak breathing frequency/tidal volume = 38.4 ± 22.7 vs 21.7 ± 14.2 breaths/min/L) and exercise-induced inspiratory capacity reduction (-0.17 ± 0.33 vs 0.10 ± 0.30 L) (all P < .05) compared to controls. In addition, higher ventilatory response (ΔV̇E/ΔV̇CO2 = 34.1 ± 6.7 vs 27.0 ± 2.3 L/L) and symptomatic burden (dyspnea and leg discomfort) to the imposed workload were observed in patients. Of note, pulse oximetry was similar between groups. Reduced aerobic capacity in the context of a tachypneic breathing pattern, inspiratory capacity reduction and preserved oxygen exchange during progressive exercise should raise the suspicion of inspiratory muscle weakness in subjects with otherwise unexplained breathlessness.

Keywords: exercise test; maximal respiratory pressures; muscle weakness; respiration disorders; respiratory function tests; respiratory muscles.

PubMed Disclaimer

References

REFERENCES

    1. Parshall MB, Schwartzstein RM, Adams L, et al. An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med. 2012;185:435‐452.
    1. O'Donnell DE, Milne KM, Vincent SG, Neder JA. Unraveling the causes of unexplained dyspnea: the value of exercise testing. Clin Chest Med. 2019;40:471‐499.
    1. Polkey MI. Respiratory muscle assessment in clinical practice. Clin Chest Med. 2019;40:307‐315.
    1. Laveneziana P, Albuquerque A, Aliverti A, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J. 2019;53(6):1801214.
    1. Santana PV, Prina E, Caruso P, Carvalho CR, Albuquerque AL. Dyspnea of unknown cause. Think about diaphragm. Ann Am Thorac Soc. 2014;11:1656‐1659.

LinkOut - more resources