Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Feb;254(2 Pt 1):C243-50.
doi: 10.1152/ajpcell.1988.254.2.C243.

Asymmetry of Na-K-Cl cotransport in human erythrocytes

Affiliations

Asymmetry of Na-K-Cl cotransport in human erythrocytes

G R Kracke et al. Am J Physiol. 1988 Feb.

Abstract

The Na-K-Cl cotransport system in human erythrocytes was studied by measuring net influxes and effluxes of Na and K. The influx of K was shown to be stimulated by Na and the influx of Na was stimulated by K, satisfying the fundamental criterion of cotransport. In addition, these mutually stimulating cation influxes had a stoichiometry of 1:1 and were entirely inhibited by furosemide; these results are also consistent with cotransport. Furthermore, the mutually stimulating influxes were entirely dependent on Cl, since they were abolished when nitrate was substituted for Cl. In contrast, cotransport, defined by mutual dependence of fluxes, was not detected in the outward direction over a range of cellular Na and K concentrations from 0 to 50 mmol/l cells. The cotransport pathway did, however, appear to mediate a Na-stimulated K efflux (but no K-stimulated Na efflux), and furosemide-inhibitable effluxes of both Na and K. Nitrate (but not sulfate) appeared to substitute for chloride in promoting Na-stimulated K efflux. Thus the Na-K-Cl cotransport system in human red cells is intrinsically asymmetric, and mediates coupled cation fluxes readily only in the inward direction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources