Stem Cell-Laden Coaxially Electrospun Fibrous Scaffold for Regenerative Engineering Applications
- PMID: 33484477
- PMCID: PMC11443444
- DOI: 10.1002/cpz1.13
Stem Cell-Laden Coaxially Electrospun Fibrous Scaffold for Regenerative Engineering Applications
Erratum in
-
Group Correction Statement (Data Availability Statements).Curr Protoc. 2022 Aug;2(8):e552. doi: 10.1002/cpz1.552. Curr Protoc. 2022. PMID: 36005902 Free PMC article. No abstract available.
-
Group Correction Statement (Conflict of Interest Statements).Curr Protoc. 2022 Aug;2(8):e551. doi: 10.1002/cpz1.551. Curr Protoc. 2022. PMID: 36005903 Free PMC article. No abstract available.
Abstract
Stem cell-based therapies for various ailments have attracted significant attention for over a decade. However, low retention of transplanted cells at the damaged site has hindered their potential for use in therapy. Tissue engineered grafts with fibrillar structures mimicking the extracellular matrix (ECM) can be potentially used to increase the retention and engraftment of stem cells at the damaged site. Moreover, these grafts may also provide mechanical stability at the damaged site to enhance function and regeneration. Among all the methods to produce fibrillar structures developed in recent years, electrospinning is a simple and versatile method to produce fibrous structures ranging from a few nanometers to micrometers. Coaxial electrospinning enables production of a mechanically stable core with a cell-binding sheath for enhanced cell adhesion and proliferation. Furthermore, this process provides an alternative to functionalized engineered scaffolds with specific compositions. The present article describes the protocol for developing a polycaprolactone (PCL) core and gelatin/gelatin methacrylate (GelMA) sheath laden with stem cells for various regenerative engineering applications. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Uniaxial PCL electrospinning Basic Protocol 2: Coaxial electrospinning Support Protocol 1: Scaffold characterization for Basic Protocols 1 and 2 Basic Protocol 3: Cell seeding on uniaxial and coaxial electrospun scaffolds and MTS assay Support Protocol 2: Preparation of scaffold with cells for scanning electron microscopy.
Keywords: GelMA; PCL; coaxial; electrospinning; gelatin; stem cells.
© 2021 Wiley Periodicals LLC.
Figures






Similar articles
-
Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering.ACS Omega. 2022 Apr 13;7(16):13894-13905. doi: 10.1021/acsomega.2c00271. eCollection 2022 Apr 26. ACS Omega. 2022. PMID: 35559153 Free PMC article.
-
Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering.Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:479-490. doi: 10.1016/j.msec.2019.01.127. Epub 2019 Jan 30. Mater Sci Eng C Mater Biol Appl. 2019. PMID: 30889723 Free PMC article.
-
Electrospun polycaprolactone/gelatin composites with enhanced cell-matrix interactions as blood vessel endothelial layer scaffolds.Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:901-908. doi: 10.1016/j.msec.2016.10.083. Epub 2016 Nov 2. Mater Sci Eng C Mater Biol Appl. 2017. PMID: 27987787
-
Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.Acta Biomater. 2017 Mar 1;50:41-55. doi: 10.1016/j.actbio.2016.12.034. Epub 2016 Dec 21. Acta Biomater. 2017. PMID: 28011142 Review.
-
Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering.Mater Sci Eng C Mater Biol Appl. 2018 Nov 1;92:995-1005. doi: 10.1016/j.msec.2018.06.065. Epub 2018 Jun 30. Mater Sci Eng C Mater Biol Appl. 2018. PMID: 30184829 Review.
Cited by
-
Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering.ACS Omega. 2022 Apr 13;7(16):13894-13905. doi: 10.1021/acsomega.2c00271. eCollection 2022 Apr 26. ACS Omega. 2022. PMID: 35559153 Free PMC article.
-
Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering.Front Bioeng Biotechnol. 2022 Jun 30;10:897010. doi: 10.3389/fbioe.2022.897010. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35845401 Free PMC article. Review.
References
-
- Aldana AA, Malatto L, Rehman MAU, Boccaccini AR, & Abraham GA (2019). Fabrication of Gelatin Methacrylate (GelMA) Scaffolds with Nano- and Micro-Topographical and Morphological Features. Nanomaterials, 9(1). Retrieved from <Go to ISI>://WOS:000459737200119. doi:ARTN 120 10.3390/nano9010120 - DOI - PMC - PubMed
-
- Assmus B, Dimmeler S, & Zeiher AM (2015). Cardiac cell therapy: lost in meta-analyses. Circ Res, 116(8), 1291–1292. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25858060. doi:10.1161/CIRCRESAHA.115.306330 - DOI - PubMed
-
- Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, . . . Zeiher AM (2002). Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation, 106(24), 3009–3017. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dop... - PubMed
-
- Bhattarai SR, Bhattarai N, Yi HK, Hwang PH, Cha DI, & Kim HY (2004). Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials, 25(13), 2595–2602. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14751745. doi:10.1016/j.biomaterials.2003.09.043 - DOI - PubMed
-
- Hubbell JA (1995). Biomaterials in tissue engineering. Biotechnology (N Y), 13(6), 565–576. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9634795. doi:10.1038/nbt0695-565 - DOI - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources