Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling study
- PMID: 33484644
- PMCID: PMC7826085
- DOI: 10.1016/S2468-2667(20)30308-X
Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling study
Erratum in
-
Correction to Lancet Public Health 2021; 6: e175-83.Lancet Public Health. 2021 Jun;6(6):e364. doi: 10.1016/S2468-2667(21)00111-0. Epub 2021 May 19. Lancet Public Health. 2021. PMID: 34019839 Free PMC article. No abstract available.
Abstract
Background: In most countries, contacts of confirmed COVID-19 cases are asked to quarantine for 14 days after exposure to limit asymptomatic onward transmission. While theoretically effective, this policy places a substantial social and economic burden on both the individual and wider society, which might result in low adherence and reduced policy effectiveness. We aimed to assess the merit of testing contacts to avert onward transmission and to replace or reduce the length of quarantine for uninfected contacts.
Methods: We used an agent-based model to simulate the viral load dynamics of exposed contacts, and their potential for onward transmission in different quarantine and testing strategies. We compared the performance of quarantines of differing durations, testing with either PCR or lateral flow antigen (LFA) tests at the end of quarantine, and daily LFA testing without quarantine, against the current 14-day quarantine strategy. We also investigated the effect of contact tracing delays and adherence to both quarantine and self-isolation on the effectiveness of each strategy.
Findings: Assuming moderate levels of adherence to quarantine and self-isolation, self-isolation on symptom onset alone can prevent 37% (95% uncertainty interval [UI] 12-56) of onward transmission potential from secondary cases. 14 days of post-exposure quarantine reduces transmission by 59% (95% UI 28-79). Quarantine with release after a negative PCR test 7 days after exposure might avert a similar proportion (54%, 95% UI 31-81; risk ratio [RR] 0·94, 95% UI 0·62-1·24) to that of the 14-day quarantine period, as would quarantine with a negative LFA test 7 days after exposure (50%, 95% UI 28-77; RR 0·88, 0·66-1·11) or daily testing without quarantine for 5 days after tracing (50%, 95% UI 23-81; RR 0·88, 0·60-1·43) if all tests are returned negative. A stronger effect might be possible if individuals isolate more strictly after a positive test and if contacts can be notified faster.
Interpretation: Testing might allow for a substantial reduction in the length of, or replacement of, quarantine with a small excess in transmission risk. Decreasing test and trace delays and increasing adherence will further increase the effectiveness of these strategies. Further research is required to empirically evaluate the potential costs (increased transmission risk, false reassurance) and benefits (reduction in the burden of quarantine, increased adherence) of such strategies before adoption as policy.
Funding: National Institute for Health Research, UK Research and Innovation, Wellcome Trust, EU Horizon 2021, and the Bill & Melinda Gates Foundation.
Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Figures
Comment in
-
Accuracy for key parameters in modelling study.Lancet Public Health. 2022 Jun;7(6):e494. doi: 10.1016/S2468-2667(22)00085-8. Lancet Public Health. 2022. PMID: 35660209 Free PMC article. No abstract available.
References
-
- Wright L, Steptoe A, Fancourt D. What predicts adherence to COVID-19 government guidelines? Longitudinal analyses of 51,000 UK adults. medRxiv. 2020 doi: 10.1101/2020.10.19.20215376. published online Oct 21. (preprint) - DOI
-
- WHO Antigen-detection in the diagnosis of SARS-CoV-2 infection using rapid immunoassays. https://www.who.int/publications-detail-redirect/antigen-detection-in-th...
-
- University of Oxford Oxford University and PHE confirm high-sensitivity of Lateral Flow Tests following extensive clinical evaluation. https://www.ox.ac.uk/news/2020-11-11-oxford-university-and-phe-confirm-h...
-
- Public Health England Understanding cycle threshold (Ct) in SARS-CoV-2 RT-PCR: a guide for health protection terms. https://www.gov.uk/government/publications/cycle-threshold-ct-in-sars-co...
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
