Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 22:1147:99-107.
doi: 10.1016/j.aca.2020.12.040. Epub 2020 Dec 31.

Hafnium oxide layer-enhanced single-walled carbon nanotube field-effect transistor-based sensing platform

Affiliations

Hafnium oxide layer-enhanced single-walled carbon nanotube field-effect transistor-based sensing platform

QingYi Meng et al. Anal Chim Acta. .

Abstract

Single-walled carbon nanotube-based field effect transistors (SWCNT-FETs) are ideal candidates for fabricating sensors and have been widely used for chemical sensing applications. SWCNT-FETs have low selectivity because of the environmentally sensitive electronic properties of SWCNTs, and SWCNT-FETs also show a high noise signal and poor sensitivity because of charge trapping from Si-OH hydration of the SiO2/Si substrate on the SWCNTs. Herein, poly (4-vinylpyridine) (P4VP) was used for noncovalent attachment to SWCNTs and selective binding to copper ions (Cu2+). Importantly, the introduction of a hafnium-oxide (HfO2) layer through atomic layer deposition (ALD) overcame the charge trapping by SiO2 hydration and remarkably decreased the interference signal. The sensitivity of the P4VP/SWCNT/HfO2-FET sensor for Cu2+ was 7.9 μA μM-1, which was approximately 100 times higher than that of the P4VP/SWCNT/SiO2-FET sensor, and its limit of detection (LOD) was as low as 33 pmol L-1. Thus, the P4VP/SWCNT/HfO2-FET sensor is a promising candidate for the development of Cu2+-selective sensors and can be designed for the large-scale manufacturing of custom-made sensors in the future.

Keywords: Copper ions; Field-effect transistor; HfO(2) layer; Single-walled carbon nanotubes; poly(4-vinylpyridine).

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources